Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Immunol Ther Exp (Warsz) ; 68(3): 17, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32448979

RESUMEN

Exopolysaccharides (EPSs), major components of the bacterial biofilm, display strong strain-specific immunomodulatory properties. Previously, we have shown that crude EPS derived from Lactobacillus rhamnosus KL37 depresses the production of arthritogenic anti-collagen IgG and ameliorates collagen-induced arthritis (CIA) in DBA/1 mice, when lipopolysaccharide (LPS) was used as adjuvant. In this study, we used highly purified EPS from L. rhamnosus KL37 (EPS-37) to verify its anti-inflammatory properties and the ability to suppress T cell-dependent humoral response. We have employed the model of active CIA, in which mice immunized with type II collagen (CII) along with LPS were treated with pure EPS-37. Intravenous administration of purified EPS-37 markedly ameliorated arthritis and reduced CII-specific antibody production. EPS-37 injected subcutaneously reduced the clinical symptoms of CIA but without the reduction of arthritogenic antibodies. In addition, the effect of EPS-37 on T-cell functions was tested ex vivo and in vitro. EPS-37 inhibited the in vitro proliferation of T cells activated both in vivo (CII immunization) and in vitro (antigen/mitogen), and markedly reduced the production of interferon (IFN)-γ. These results together with other reports suggest that anti-inflammatory potential of EPS-37 depends on its ability to inhibit either one or the other or both possible inflammatory signaling pathways. Namely, Th1 → IFN-γ → M1 inflammatory macrophages → arthritis and/or Th1 → IFN-γ → B cells → arthritogenic antibodies → arthritis. We suggest that L. rhamnosus KL37 EPS might be utilized to control T cell-dependent immune responses in various inflammatory diseases. However, the most effective route of EPS-37 administration needs to be tailored for a given disorder.


Asunto(s)
Antiinflamatorios/metabolismo , Artritis Experimental/inmunología , Artritis/inmunología , Lacticaseibacillus rhamnosus/fisiología , Polisacáridos Bacterianos/metabolismo , Linfocitos T/inmunología , Animales , Artritis/microbiología , Artritis Experimental/microbiología , Autoanticuerpos/metabolismo , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Inmunidad Humoral , Terapia de Inmunosupresión , Interferón gamma/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos DBA
2.
Biometals ; 29(6): 1019-1033, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27757565

RESUMEN

Translocation of bacteria, primarily Gram-negative pathogenic flora, from the intestinal lumen into the circulatory system leads to sepsis. In newborns, and especially very low birth weight infants, sepsis is a major cause of morbidity and mortality. The results of recently conducted clinical trials suggest that lactoferrin, an iron-binding protein that is abundant in mammalian colostrum and milk, may be an effective agent in preventing sepsis in newborns. However, despite numerous basic studies on lactoferrin, very little is known about how metal saturation of this protein affects a host's health. Therefore, the main objective of this study was to elucidate how iron-depleted, iron-saturated, and manganese-saturated forms of lactoferrin regulate intestinal barrier function via interactions with epithelial cells and macrophages. For these studies, a human intestinal epithelial cell line, Caco-2, was used. In this model, none of the tested lactoferrin forms induced higher levels of apoptosis or necrosis. There was also no change in the production of tight junction proteins regardless of lactoferrin metal saturation status. None of the tested forms induced a pro-inflammatory response in Caco-2 cells or in macrophages either. However, the various lactoferrin forms did effectively inhibit the pro-inflammatory response in macrophages that were activated with lipopolysaccharide with the most potent effect observed for apolactoferrin. Lactoferrin that was not bound to its cognate receptor was able to bind and neutralize lipopolysaccharide. Lactoferrin was also able to neutralize microbial-derived antigens, thereby potentially reducing their pro-inflammatory effect. Therefore, we hypothesize that lactoferrin supplementation is a relevant strategy for preventing sepsis.


Asunto(s)
Mucosa Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Lactoferrina/química , Lactoferrina/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Apoproteínas/química , Apoptosis/efectos de los fármacos , Células CACO-2 , Bovinos , Citocinas/metabolismo , Células Epiteliales/efectos de los fármacos , Gastroenteritis/prevención & control , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Hierro/química , Lactoferrina/metabolismo , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Manganeso/química , Proteínas de Uniones Estrechas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA