Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 32(13): 4372-85, 2012 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22457488

RESUMEN

The assembly of neural circuits is dependent upon the generation of specific neuronal subtypes, each subtype displaying unique properties that direct the formation of selective connections with appropriate target cells. Actions of transcription factors in neural progenitors and postmitotic cells are key regulators in this process. LIM-homeodomain transcription factors control crucial aspects of neuronal differentiation, including subtype identity and axon guidance. Nonetheless, their regulation during development is poorly understood and the identity of the downstream molecular effectors of their activity remains largely unknown. Here, we demonstrate that the Lhx2 transcription factor is dynamically regulated in distinct pools of thalamic neurons during the development of thalamocortical connectivity in mice. Indeed, overexpression of Lhx2 provokes defective thalamocortical axon guidance in vivo, while specific conditional deletion of Lhx2 in the thalamus produces topographic defects that alter projections from the medial geniculate nucleus and from the caudal ventrobasal nucleus in particular. Moreover, we demonstrate that Lhx2 influences axon guidance and the topographical sorting of axons by regulating the expression of Robo1 and Robo2 guidance receptors, which are essential for these axons to establish correct connections in the cerebral cortex. Finally, augmenting Robo1 function restores normal axon guidance in Lhx2-overexpressing neurons. By regulating axon guidance receptors, such as Robo1 and Robo2, Lhx2 differentially regulates the axon guidance program of distinct populations of thalamic neurons, thus enabling the establishment of specific neural connections.


Asunto(s)
Axones/fisiología , Corteza Cerebral/fisiología , Proteínas con Homeodominio LIM/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Neurogénesis/fisiología , Receptores Inmunológicos/biosíntesis , Tálamo/fisiología , Factores de Transcripción/fisiología , Animales , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Embrión de Mamíferos , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Proteínas con Homeodominio LIM/metabolismo , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Ratones Transgénicos , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Transducción de Señal/fisiología , Tálamo/crecimiento & desarrollo , Tálamo/metabolismo , Factores de Transcripción/metabolismo , Proteínas Roundabout
2.
Curr Biol ; 21(20): 1748-55, 2011 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-22000108

RESUMEN

How guidance cues are integrated during the formation of complex axonal tracts remains largely unknown. Thalamocortical axons (TCAs), which convey sensory and motor information to the neocortex, have a rostrocaudal topographic organization initially established within the ventral telencephalon [1-3]. Here, we show that this topography is set in a small hub, the corridor, which contains matching rostrocaudal gradients of Slit1 and Netrin 1. Using in vitro and in vivo experiments, we show that Slit1 is a rostral repellent that positions intermediate axons. For rostral axons, although Slit1 is also repulsive and Netrin 1 has no chemotactic activity, the two factors combined generate attraction. These results show that Slit1 has a dual context-dependent role in TCA pathfinding and furthermore reveal that a combination of cues produces an emergent activity that neither of them has alone. Our study thus provides a novel framework to explain how a limited set of guidance cues can generate a vast diversity of axonal responses necessary for proper wiring of the nervous system.


Asunto(s)
Axones/fisiología , Conos de Crecimiento/fisiología , Factores de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Tálamo/embriología , Tálamo/fisiología , Proteínas Supresoras de Tumor/metabolismo , Animales , Células COS , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Chlorocebus aethiops , Efrina-A5/genética , Efrina-A5/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Transgénicos , Factores de Crecimiento Nervioso/genética , Proteínas del Tejido Nervioso/genética , Netrina-1 , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Proteínas Supresoras de Tumor/genética , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo , Proteínas Roundabout
3.
Neuron ; 69(6): 1085-98, 2011 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-21435555

RESUMEN

How brain connectivity has evolved to integrate the mammalian-specific neocortex remains largely unknown. Here, we address how dorsal thalamic axons, which constitute the main input to the neocortex, are directed internally to their evolutionary novel target in mammals, though they follow an external path to other targets in reptiles and birds. Using comparative studies and functional experiments in chick, we show that local species-specific differences in the migration of previously identified "corridor" guidepost neurons control the opening of a mammalian thalamocortical route. Using in vivo and ex vivo experiments in mice, we further demonstrate that the midline repellent Slit2 orients migration of corridor neurons and thereby switches thalamic axons from an external to a mammalian-specific internal path. Our study reveals that subtle differences in the migration of conserved intermediate target neurons trigger large-scale changes in thalamic connectivity, and opens perspectives on Slit functions and the evolution of brain wiring.


Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Tálamo/metabolismo , Análisis de Varianza , Animales , Axones/metabolismo , Corteza Cerebral/embriología , Embrión de Pollo , Humanos , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Transgénicos , Red Nerviosa/embriología , Red Nerviosa/metabolismo , Vías Nerviosas/embriología , Vías Nerviosas/metabolismo , Especificidad de la Especie , Tálamo/embriología , Tortugas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA