Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Pharmacol ; 14: 1301154, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074122

RESUMEN

Anchusa strigosa Banks and Sol. is a rough flowering plant of the Boraginaceae family native to Eastern Mediterranean region that is widely used in traditional herbal medicine, mainly for the treatment of wounds, abdominal pain, and arthritis, to name a few. This article aims to gather knowledge related to the medicinal properties of A. strigosa. Specifically, it summarizes its traditional uses and pharmacological activities in the treatment of various diseases. Moreover, its botanical, ecological, and phytochemical characteristics are also discussed. Research showed that this plant is rich in pyrrolizidine alkaloids, particularly in the leaves. Other bioactive metabolites identified in this plant include flavonoids, phenolic acids, triterpenes, organic acids, and volatile organic compounds. These phytochemicals are responsible for the reported pharmacological properties of A. strigosa, including antimicrobial, antioxidant, anticancer, anti-inflammatory, antiarthritic, gastric protective, antidiabetic, and pro-wound healing. This warrants further investigation into the molecular mechanism of action behind the observed effects to elucidate its therapeutic potential. Nevertheless, more research on this plant is needed to ensure its efficacy and safety.

2.
Front Pharmacol ; 14: 1201969, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593172

RESUMEN

Pancreatic cancer is a highly aggressive malignancy and a leading cause of cancer-related deaths worldwide. Moreover, the incidence and mortality rates for pancreatic cancer are projected to keep increasing. A major challenge in the treatment of pancreatic cancer is the lack of effective screening approaches, which contributes to its poor prognosis, indicating the need for new treatment regimens and alternative therapies, such as herbal medicine. The medicinal plant A. strigosa, which is widely distributed in the Eastern Mediterranean region, is a short prickly plant from the Boraginaceae family that has been widely used in traditional medicine for treating various diseases. Nevertheless, its effect on human pancreatic cancer remains poorly investigated. In the present study, we screened the phytochemical content of Anchusa strigosa aqueous extracts obtained by maceration and ultrasound-assisted methods (ASM and ASU, respectively) and evaluated their antioxidant effects. We also investigated their anticancer effects and possible underlying mechanisms. The results show that both extracts were rich in bioactive molecules, with slight differences in their composition. Both extracts exhibited remarkable antioxidant potential and potent radical-scavenging activity in vitro. Additionally, non-cytotoxic concentrations of both extracts attenuated cell proliferation in a time- and concentration-dependent manner, which was associated with a decrease in the proliferation marker Ki67 and an induction of the intrinsic apoptotic pathway. Furthermore, the extracts increased the aggregation of pancreatic cancer cells and reduced their migratory potential, with a concomitant downregulation of integrin ß1. Finally, we showed that the ASM extract caused a significant decrease in the levels of COX-2, an enzyme that has been linked to inflammation, carcinogenesis, tumor progression, and metastasis. Taken together, our findings provide evidence that A. strigosa extracts, particularly the extract obtained using the maceration method, have a potential anticancer effect and may represent a new resource for the design of novel drugs against pancreatic cancer.

3.
Nutrients ; 15(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37447209

RESUMEN

Rutin has been reported as a potential anti-cancer agent for several decades. This study evaluated the effects of rutin on the proliferation, metastasis, and angiogenesis of MDA-MB-231 and MCF-7 breast cancer cell lines. Increasing concentrations of rutin significantly stimulated the proliferation of MDA-MB-231 and MCF-7 cells compared to controls. Wound scratch assay demonstrated that rutin had an inducing effect on the migration of the cells. In MDA-MB-231 and MCF-7 cells, rutin upregulated MKI67, VIM, CDH2, FN1, and VEGFA and downregulated CDH1 and THBS1 genes. It also increased N-cadherin and VEGFA and decreased E-cadherin and thrombospondin 1 protein expression. Our data indicated that rutin could stimulate proliferation, migration, and pro-angiogenic activity in two different breast cancer cell lines. This phytoestrogen induced invasion and migration of both cell lines by a mechanism involving the EMT process. This suggests that rutin may act as a breast-cancer-promoting phytoestrogen.


Asunto(s)
Neoplasias de la Mama , Transición Epitelial-Mesenquimal , Humanos , Femenino , Células MCF-7 , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Fitoestrógenos/farmacología , Movimiento Celular , Proliferación Celular
4.
Front Pharmacol ; 13: 994025, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299882

RESUMEN

Background: Breast cancer (BC) is the second most common cancer overall. In women, BC is the most prevalent cancer and the leading cause of cancer-related mortality. Triple-negative BC (TNBC) is the most aggressive BC, being resistant to hormonal and targeted therapies. HYPOTHESIS/PURPOSE: The medicinal plant Origanum syriacum L. is a shrubby plant rich in bioactive compounds and widely used in traditional medicine to treat various diseases. However, its therapeutic potential against BC remains poorly investigated. In the present study, we screened the phytochemical content of an ethanolic extract of O. syriacum (OSEE) and investigated its anticancer effects and possible underlying mechanisms of action against the aggressive and highly metastatic human TNBC cell line MDA-MB-231. METHODS: MTT, trans-well migration, and scratch assays were used to assess cell viability, invasion, or migration, respectively. Antioxidant potential was evaluated in vitro using the DPPH radical-scavenging assay and levels of reactive oxygen species (ROS) were assessed in cells in culture using DHE staining. Aggregation assays were used to determine cell-cell adhesion. Flow cytometry was used to analyze cell cycle progression. Protein levels of markers of apoptosis (BCL-2, pro-Caspase3, p53), proliferation (p21, Ki67), cell migration, invasion, or adhesion (FAK, E-cadherin), angiogenesis (iNOS), and cell signaling (STAT3, p38) were determined by immunoblotting. A chorioallantoic Membrane (CAM) assay evaluated in ovo angiogenesis. RESULTS: We demonstrated that OSEE had potent radical scavenging activity in vitro and induced the generation of ROS in MDA-MB-231 cells, especially at higher OSEE concentrations. Non-cytotoxic concentrations of OSEE attenuated cell proliferation and induced G0/G1 cell cycle arrest, which was associated with phosphorylation of p38 MAPK, an increase in the levels of tumor suppressor protein p21, and a decrease of proliferation marker protein Ki67. Additionally, only higher concentrations of OSEE were able to attenuate inhibition of proliferation induced by the ROS scavenger N-acetyl cysteine (NAC), indicating that the anti-proliferative effects of OSEE could be ROS-dependent. OSEE stimulated apoptosis and its effector Caspase-3 in MDA-MB-231 cells, in correlation with activation of the STAT3/p53 pathway. Furthermore, the extract reduced the migration and invasive properties of MDA-MB-231 cells through the deactivation of focal adhesion kinase (FAK). OSEE also reduced the production of inducible nitric oxide synthase (iNOS) and inhibited in ovo angiogenesis. CONCLUSION: Our findings reveal that OSEE is a rich source of phytochemicals and has robust anti-breast cancer properties that significantly attenuate the malignant phenotype of MD-MB-231 cells, suggesting that O. syriacum may not only act as a rich source of potential TNBC therapeutics but may also provide new avenues for the design of novel TNBC drugs.

5.
Molecules ; 27(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35807485

RESUMEN

Ziziphus nummularia, a small bush of the Rhamnaceae family, has been widely used in traditional folk medicine, is rich in bioactive molecules, and has many reported pharmacological and therapeutic properties. Objective: To gather the current knowledge related to the medicinal characteristics of Z. nummularia. Specifically, its phytochemical contents and pharmacological activities in the treatment of various diseases such as cancer, diabetes, and cardiovascular diseases, are discussed. Methods: Major scientific literature databases, including PubMed, Scopus, ScienceDirect, SciFinder, Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, Henriette's Herbal Homepage, Dr. Duke's Phytochemical and Ethnobotanical Databases, were searched to retrieve articles related to the review subject. General web searches using Google and Google scholar were also utilized. The search period covered articles published between 1980 and the end of October 2021.The search used the keywords 'Ziziphus nummularia', AND ('phytochemical content', 'pharmacological properties, or activities, or effects, or roles', 'anti-inflammatory', 'anti-drought', 'anti-thermal', 'anthelmintic', 'antidiabetic',' anticancer', 'anticholinesterase', 'antimicrobial', 'sedative', 'antipyretic', 'analgesic', or 'gastrointestinal'). Results: This plant is rich in characteristic alkaloids, especially cyclopeptide alkaloids such as nummularine-M. Other phytochemicals, including flavonoids, saponins, glycosides, tannins, and phenolic compounds, are also present. These phytochemicals are responsible for the reported pharmacological properties of Z. nummularia, including anti-inflammatory, antioxidant, antimicrobial, anthelmintic, antidiabetic, anticancer, analgesic, and gastrointestinal activities. In addition, Z. nummularia has anti-drought and anti-thermal characteristics. Conclusion: Research into the phytochemical and pharmacological properties of Z. nummularia has demonstrated that this plant is a rich source of novel bioactive compounds. So far, Z. nummularia has shown a varied pharmacological profile (antioxidant, anticancer, anti-inflammatory, and cardioprotective), warranting further research to uncover the therapeutic potential of the bioactives of this plant. Taken together, Z. nummularia may represent a new potential target for the discovery of new drug leads.


Asunto(s)
Alcaloides , Ziziphus , Antioxidantes , Etnofarmacología , Medicina Tradicional , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoterapia , Extractos Vegetales/química , Ziziphus/química
6.
Molecules ; 27(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35807517

RESUMEN

Herbal medicine has been gaining special interest as an alternative choice of treatment for several diseases, being generally accessible, cost-effective and safe, with fewer side-effects compared to chemically synthesized medicines. Over 25% of drugs worldwide are derived from plants, and surveys have shown that, when available, herbal medicine is the preferred choice of treatment. Origanum syriacum (Lamiaceae) is a widely used medicinal plant in the Middle East, both as a home and a folk remedy, and in the food and beverage industry. Origanum syriacum contains numerous phytochemical compounds, including flavonoids, phenols, essential oils, and many others. Because of its bioactive compounds, O. syriacum possesses antioxidant, antimicrobial, and antiparasitic capacities. In addition, it can be beneficial in the treatment of various diseases such as cancer, neurodegenerative disorders, and peptic ulcers. In this review, the chemical compositions of different types of extracts and essential oils from this herb will first be specified. Then, the pharmacological uses of these extracts and essential oils in various contexts and diseases will be discussed, putting emphasis on their efficacy and safety. Finally, the cellular and molecular mechanisms of O. syriacum phytochemicals in disease treatment will be described as a basis for further investigation into the plant's pharmacological role.


Asunto(s)
Antiinfecciosos , Aceites Volátiles , Origanum , Plantas Medicinales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Aceites Volátiles/química , Aceites Volátiles/farmacología , Origanum/química , Fitoquímicos/farmacología , Fitoterapia , Extractos Vegetales/química , Plantas Medicinales/química
7.
Molecules ; 26(15)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34361588

RESUMEN

Psophocarpus tetragonolobus has long been used in traditional medicine and cuisine. In this study, Psophocarpus tetragonolobus extracts were isolated by maceration and ultrasound-assisted extraction and were evaluated for their antioxidant and anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The obtained results show that both extracts (maceration and ultrasound) were rich in bioactive molecules and exerted substantial antioxidant and anti-inflammatory effects. The P. tetragonolobus extracts' treatment in LPS-stimulated RAW264.7 macrophages resulted in a significant downregulation of the expressions of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1ß mRNA. In addition, the P. tetragonolobus extracts' treatment attenuated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression. Our observations indicate that there is no significant difference between the two studied extracts of P. tetragonolobus in terms of biological properties (specifically, antioxidant and anti-inflammatory effects. Regardless of the extraction method, P. tetragonolobus could be used for treating diseases related to oxidative stress and inflammatory reactions.


Asunto(s)
Antiinflamatorios , Antioxidantes , Fabaceae/química , Macrófagos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/toxicidad , Ratones , Extractos Vegetales/química , Extractos Vegetales/farmacología , Células RAW 264.7 , Ondas Ultrasónicas
8.
Biomolecules ; 11(4)2021 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916780

RESUMEN

Cancer is a challenging problem for the global health community, and its increasing burden necessitates seeking novel and alternative therapies. Most cancers share six basic characteristics known as "cancer hallmarks", including uncontrolled proliferation, refractoriness to proliferation blockers, escaping apoptosis, unlimited proliferation, enhanced angiogenesis, and metastatic spread. Apoptosis, as one of the best-known programmed cell death processes, is generally promoted through two signaling pathways, including the intrinsic and extrinsic cascades. These pathways comprise several components that their alterations can render an apoptosis-resistance phenotype to the cell. Therefore, targeting more than one molecule in apoptotic pathways can be a novel and efficient approach for both identifying new anticancer therapeutics and preventing resistance to therapy. The main purpose of this review is to summarize data showing that various plant extracts and plant-derived molecules can activate both intrinsic and extrinsic apoptosis pathways in human cancer cells, making them attractive candidates in cancer treatment.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Productos Biológicos/farmacología , Plantas/química , Antineoplásicos Fitogénicos/uso terapéutico , Productos Biológicos/química , Productos Biológicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Extractos Vegetales/química , Plantas/metabolismo
9.
Molecules ; 26(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562701

RESUMEN

Chronic cerebral ischemia with a notable long-term cessation of blood supply to the brain tissues leads to sensorimotor defects and short- and long-term memory problems. Neuroprotective agents are used in an attempt to save ischemic neurons from necrosis and apoptosis, such as the antioxidant agent Eucalyptus. Numerous studies have demonstrated the involvement of the renin-angiotensin system in the initiation and progression of cardiovascular and neurodegenerative diseases. Candesartan is a drug that acts as an angiotensin II receptor 1 blocker. We established a rat model exhibiting sensorimotor and cognitive impairments due to chronic cerebral ischemia induced by the ligation of the right common carotid artery. Wistar male rats were randomly divided into five groups: Sham group, Untreated Ligated group, Ischemic group treated with Eucalyptus (500 mg/kg), Ischemic group treated with Candesartan (0.5 mg/kg), and Ischemic group treated with a combination of Eucalyptus and Candesartan. To evaluate the sensorimotor disorders, we performed the beam balance test, the beam walking test, and the modified sticky test. Moreover, the object recognition test and the Morris water maze test were performed to assess the memory disorders of the rats. The infarct rat brain regions were subsequently stained using the triphenyltetrazolium chloride staining technique. The rats in the Sham group had normal sensorimotor and cognitive functions without the appearance of microscopic ischemic brain lesions. In parallel, the untreated Ischemic group showed severe impaired neurological functions with the presence of considerable brain infarctions. The treatment of the Ischemic group with a combination of both Eucalyptus and Candesartan was more efficient in improving the sensorimotor and cognitive deficits (p < 0.001) than the treatment with Eucalyptus or Candesartan alone (p < 0.05), by the comparison to the non-treated Ischemic group. Our study shows that the combination of Eucalyptus and Candesartan could decrease ischemic brain injury and improve neurological outcomes.


Asunto(s)
Antihipertensivos/farmacología , Antioxidantes/farmacología , Bencimidazoles/farmacología , Compuestos de Bifenilo/farmacología , Isquemia Encefálica/tratamiento farmacológico , Eucalyptus/química , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Tetrazoles/farmacología , Animales , Antihipertensivos/uso terapéutico , Antioxidantes/uso terapéutico , Bencimidazoles/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Peso Corporal/efectos de los fármacos , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Arteria Carótida Común/efectos de los fármacos , Arteria Carótida Común/patología , Enfermedad Crónica , Interacciones Farmacológicas , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Ratas , Reconocimiento en Psicología/efectos de los fármacos , Tetrazoles/uso terapéutico
10.
Biomolecules ; 9(10)2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614561

RESUMEN

Helicobacterpylori is one of the most prevalent pathogens colonizing 50% of the world's population and causing gastritis and gastric cancer. Even with triple and quadruple antibiotic therapies, H. pylori shows increased prevalence of resistance to conventional antibiotics and treatment failure. Due to their pore-forming activity, antimicrobial peptides (AMP) are considered as a good alternative to conventional antibiotics, particularly in the case of resistant bacteria. In this study, temporin-SHa (a frog AMP) and its analogs obtained by Gly to Ala substitutions were tested against H. pylori. Results showed differences in the antibacterial activity and toxicity of the peptides in relation to the number and position of D-Ala substitution. Temporin-SHa and its analog NST1 were identified as the best molecules, both peptides being active on clinical resistant strains, killing 90-100% of bacteria in less than 1 h and showing low to no toxicity against human gastric cells and tissue. Importantly, the presence of gastric mucins did not prevent the antibacterial effect of temporin-SHa and NST1, NST1 being in addition resistant to pepsin. Taken together, our results demonstrated that temporin-SHa and its analog NST1 could be considered as potential candidates to treat H. pylori, particularly in the case of resistant strains.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Helicobacter pylori/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/química , Permeabilidad de la Membrana Celular/efectos de los fármacos , Helicobacter pylori/crecimiento & desarrollo , Humanos , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA