Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36838657

RESUMEN

In the present investigation, the anti-biofilm potential of two essential oils (EOs), Melaleuca alternifolia Chell (Tea-Tree) (TTO) and Eucalyptus globulus Labill. (EEO) was characterized and tested "in vitro" against both mature biofilms and biofilms in the process of formation, produced by strains belonging to three main categories of antibiotic resistant bacteria (ARB): Vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA) and broad-spectrum ß-lactamase-producing Escherichia coli (ESBL). The study was carried out in 96-well microtiter-plates using EOs alone, in association with each other and in combination with antibiotics against both single and multi-species biofilm. The study demonstrated the ability of TTO and EEO to counteract the ARB strains in sessile form, with promising results in particular against the biofilm in formation. Mature biofilm by ESBL E. coli was the most sensitive in the results from the quantification study of viable cells performed in multi-species biofilms. Lastly, in all tests, carried out using TTO/EEO associations and EOs/antibiotic combinations, the synergistic effect which emerged from the FIC-index has been confirmed, and both the reduction of biofilm in formation, and the removal of mature structure was obtained at very low concentrations, with values from 4 to >512-fold lower than the minimum inhibitory concentration (MIC) of the single compounds.


Asunto(s)
Eucalyptus , Melaleuca , Staphylococcus aureus Resistente a Meticilina , Aceites Volátiles , Aceites Volátiles/química , Eucalyptus/química , Melaleuca/química , Árboles , Escherichia coli , Antagonistas de Receptores de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Antibacterianos/farmacología , Biopelículas , , Pruebas de Sensibilidad Microbiana
2.
Adv Exp Med Biol ; 1323: 91-102, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32914396

RESUMEN

After the SARS-CoV-2 pandemic, disinfection practices and microbial load reduction have become even more important and rigorous. To determine the contamination of keyboard surface and the relative risk to transfer healthcare-associated pathogens to susceptible patients, as it frequently happens in Intensive Care Unit (ICU), a standard keyboard (SK), a cleanable keyless keyboard (KK) with smooth surface and a standard keyboard coated with a 3 M Tegaderm® film added with active essential oil (tea tree oil) (KTEO) were tested. S. aureus, including MRSA strains, were detected in ICU, with values ranging from 15% to 57%. Gram negative strains belonging to the Enterobacteriaceae family were also found with values ranging from 14% to 71%. Similar Gram positive and Gram negative strains were found on all surfaces, but with low percentage, and only environmental bacteria were detected using the settling plates method. The Microbial Challenge Test performed on KTEO showed high rates of decrease for all the pathogens with statistical significance both at 24 and 48 h (p = 0.003* and p = 0.040*, respectively). Our results suggest that the use of KTEO may be a feasible strategy for reducing the transmission of pathogens in health care setting and may be complementary to surface cleaning protocols.


Asunto(s)
COVID-19 , Infección Hospitalaria , Aceite de Árbol de Té , Infección Hospitalaria/prevención & control , Desinfección , Contaminación de Equipos/prevención & control , Humanos , Unidades de Cuidados Intensivos , Estudios Prospectivos , SARS-CoV-2 , Staphylococcus aureus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA