Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(6): e0274323, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37921483

RESUMEN

IMPORTANCE: The integration of metabolomics-based approaches into the discovery pipeline has enabled improved mining and prioritization of prolific secondary metabolite producers such as endophytic fungi. However, relying on automated untargeted analysis tools might lead to misestimation of the chemical complexity harbored in these organisms. Our study emphasizes the importance of isolation and structure elucidation of the respective metabolites in addition to deep metabolome analysis for the correct interpretation of untargeted metabolomics approaches such as molecular networking. Additionally, it encourages the further exploration of endophytic fungi from traditional medicinal plants for the discovery of natural products.


Asunto(s)
Plantas Medicinales , Policétidos , Endófitos , Lactonas/metabolismo , Policétidos/metabolismo , Metabolómica , Hongos/metabolismo
2.
Beilstein J Org Chem ; 19: 1555-1561, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915561

RESUMEN

From a fresh root of Trema guineensis (Ulmaceae), endophytic fungi were isolated, among which a taxon belonging to the new species Diaporthe cameroonensis. This strain was fermented in shake flask batch cultures and the broth was extracted with ethyl acetate. From the crude extract, a hemiketal polyketide 1, and an acetylated alternariol 2 were isolated, along with fifteen known secondary metabolites. Their structures were established by extensive NMR spectroscopy and mass spectrometry analyses, as well as by comparison with literature data of their analogs.

3.
Fitoterapia ; 166: 105434, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36681097

RESUMEN

Chemical investigation of an endophytic fungus herein identified as Diaporthe cf. ueckeri yielded four known compounds, named cytochalasins H and J and dicerandrols A and B. Reports of acid sensitivity within the cytochalasan family inspired an attempt of acid-mediated conversion of cytochalasins H and J, resulting in the acquisition of five polycyclic cytochalasins featuring 5/6/5/8-fused tetracyclic and 5/6/6/7/5-fused pentacyclic skeletons. Two of the obtained polycyclic cytochalasins constituted unprecedented analogues, for which the trivial names cytochalasins J4 and J5 were proposed, whereas the others were identified as the known phomopchalasin A, phomopchalasin D and 21-acetoxycytochalasin J3. The structures of the compounds were determined by extensive spectral analysis, namely HR-ESIMS, ESIMS and 1D/2D NMR. The stereochemistry of cytochalasins J4 and J5 was proposed using their ROESY data, biosynthetic and mechanistic considerations and by comparison of their ECD spectra with those of related congeners. All compounds except for cytochalasins H and J were tested for antimicrobial and cytotoxic activity. Cytochalasins J4 and J5 showed neither antimicrobial nor cytotoxic activity in the tested concentrations, with only weak antiproliferative activity observable against KB3.1 cells. The actin disruptive properties of all cytochalasins obtained in this study and of the previously reported cytochalasins RKS-1778 and phomopchalasin N were examined, and monitored by fluorescence microscopy using human osteo-sarcoma (U2-OS) cells. Compared to their precursor molecules (cytochalasins H and J), phomopchalasins A and D, 21-acetoxycytochalasin J3, cytochalasins J4 and J5 revealed a strongly reduced activity on the F-actin network, highlighting that the macrocyclic ring is crucial for bioactivity.


Asunto(s)
Antineoplásicos , Citocalasinas , Humanos , Estructura Molecular , Hongos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA