Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Diabetes Res ; 2022: 4587907, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147256

RESUMEN

Introduction: Monounsaturated fatty acids (MUFA) are understood to have therapeutic and preventive effects on chronic complications associated with type 2 diabetes mellitus (T2DM); however, there are differences between individual MUFAs. Although the effects of palmitoleic acid (POA) are still debated, POA can regulate glucose homeostasis, lipid metabolism, and cytokine production, thus improving metabolic disorders. In this study, we investigated and compared the metabolic effects of POA and oleic acid (OA) supplementation on glucose and lipid metabolism, insulin sensitivity, and inflammation in a prediabetic model, the hereditary hypertriglyceridemic rat (HHTg). HHTg rats exhibiting genetically determined hypertriglyceridemia, insulin resistance, and impaired glucose tolerance were fed a standard diet. POA and OA were each administered intragastrically at a dose of 100 mg/kg b.wt. for four weeks. Results: Supplementation with both MUFAs significantly elevated insulin and glucagon levels, but only POA decreased nonfasting glucose. POA-treated rats showed elevated circulating NEFA associated with increased lipolysis, lipoprotein lipase gene expression, and fatty acid reesterification in visceral adipose tissue (VAT). The mechanism of improved insulin sensitivity of peripheral tissues (measured as insulin-stimulated lipogenesis and glycogenesis) in POA-treated HHTg rats could contribute increased circulating adiponectin and omentin levels together with elevated FADS1 gene expression in VAT. POA-supplemented rats exhibited markedly decreased proinflammatory cytokine production by VAT, which can alleviate chronic inflammation. OA-supplemented rats exhibited decreased arachidonic acid (AA) profiles and decreased proinflammatory AA-derived metabolites (20-HETE) in membrane phospholipids of peripheral tissues. Slightly increased FADS1 gene expression after OA along with increased adiponectin production by VAT was reflected in slightly ameliorated adipose tissue insulin sensitivity (increased insulin-stimulated lipogenesis). Conclusions: Our results show that POA served as a lipokine, ameliorating insulin sensitivity in peripheral tissue and markedly modulating the metabolic activity of VAT including cytokine secretion. OA had a beneficial effect on lipid metabolism and improved inflammation by modulating AA metabolism.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Estado Prediabético , Adiponectina , Animales , Antiinflamatorios , Ácidos Araquidónicos , Citocinas , Ácidos Grasos/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Ácidos Grasos Monoinsaturados/uso terapéutico , Ácidos Grasos no Esterificados , Glucagón , Glucosa/metabolismo , Inflamación , Insulina/metabolismo , Lipoproteína Lipasa , Ácido Oléico/farmacología , Estado Prediabético/tratamiento farmacológico , Ratas
2.
Pharmaceutics ; 14(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35056941

RESUMEN

The combination of plant-derived compounds with anti-diabetic agents to manage hepatic steatosis closely associated with diabetes mellitus may be a new therapeutic approach. Silymarin, a complex of bioactive substances extracted from Silybum marianum, evinces an antioxidative, anti-inflammatory, and hepatoprotective activity. In this study, we investigated whether metformin (300 mg/kg/day for four weeks) supplemented with micronized silymarin (600 mg/kg/day) would be effective in mitigating fatty liver disturbances in a pre-diabetic model with dyslipidemia. Compared with metformin monotherapy, the metformin-silymarin combination reduced the content of neutral lipids (TAGs) and lipotoxic intermediates (DAGs). Hepatic gene expression of enzymes and transcription factors involved in lipogenesis (Scd-1, Srebp1, Pparγ, and Nr1h) and fatty acid oxidation (Pparα) were positively affected, with hepatic lipid accumulation reducing as a result. Combination therapy also positively influenced arachidonic acid metabolism, including its metabolites (14,15-EET and 20-HETE), mitigating inflammation and oxidative stress. Changes in the gene expression of cytochrome P450 enzymes, particularly Cyp4A, can improve hepatic lipid metabolism and moderate inflammation. All these effects play a significant role in ameliorating insulin resistance, a principal background of liver steatosis closely linked to T2DM. The additive effect of silymarin in metformin therapy can mitigate fatty liver development in the pre-diabetic state and before the onset of diabetes.

3.
Clin Nutr ; 40(4): 1822-1833, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33081982

RESUMEN

BACKGROUND & AIMS: Reward circuitry in the brain plays a key role in weight regulation. We tested the effects of a plant-based meal on these brain regions. METHODS: A randomized crossover design was used to test the effects of two energy- and macronutrient-matched meals: a vegan (V-meal) and a conventional meat (M-meal) on brain activity, gastrointestinal hormones, and satiety in participants with type 2 diabetes (T2D; n = 20), overweight/obese participants (O; n = 20), and healthy controls (H; n = 20). Brain perfusion was measured, using arterial spin labeling functional brain imaging; satiety was assessed using a visual analogue scale; and plasma concentrations of gut hormones were determined at 0 and 180 min. Repeated-measures ANOVA was used for statistical analysis. Bonferroni correction for multiple comparisons was applied. The Hedge's g statistic was used to measure the effect size for means of paired difference between the times (180-0 min) and meal types (M-V meal) for each group. RESULTS: Thalamus perfusion was the highest in patients with T2D and the lowest in overweight/obese individuals (p = 0.001). Thalamus perfusion decreased significantly after ingestion of the M-meal in men with T2D (p = 0.04) and overweight/obese men (p = 0.004), and it decreased significantly after ingestion of the V-meal in healthy controls (p < 0.001; Group x Meal x Time: F = 3.4; p = 0.035). The effect size was -0.41 (95% CI, -1.14 to 0.31; p = 0.26) for men with diabetes; -0.72 (95% CI, -1.48 to 0.01; p = 0.05) for overweight/obese men; and 0.82 (95% CI, 0.09 to 1.59; p = 0.03) for healthy men. Postprandial secretion of active GLP-1 increased after the V-meal compared with the M-meal by 42% (95% CI 25-62%; p = 0.003) in men with T2D and by 41% (95% CI 24-61%; p = 0.002) in healthy controls. Changes in thalamus perfusion after ingestion of both test meals correlated with changes in satiety (r = +0.68; p < 0.01), fasting plasma insulin (r = +0.40; p < 0.01), C-peptide (r = +0.48; p < 0.01) and amylin (r = +0.55; p < 0.01), and insulin secretion at 5 mmol/l (r = +0.77; p < 0.05). CONCLUSIONS: The higher postprandial GLP-1 secretion after the V-meal in men with T2D, with concomitant greater satiety and changes in thalamus perfusion, suggest a potential use of plant-based meals in addressing the key pathophysiologic mechanisms of food intake regulation. Trial registration ClinicalTrials.gov number, NCT02474147.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Dieta Vegetariana/métodos , Ingestión de Energía , Nutrientes/metabolismo , Sobrepeso/metabolismo , Tálamo/irrigación sanguínea , Adulto , Anciano , Estudios Cruzados , Dieta/métodos , Humanos , Masculino , Comidas , Persona de Mediana Edad , Obesidad/metabolismo , Tálamo/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 288(4): H1566-72, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15576445

RESUMEN

We examined the role of protein kinase C (PKC) in the cardioprotective mechanism induced by long-term adaptation to chronic intermittent hypoxia. Adult male Wistar rats were exposed to hypobaric hypoxia of 7,000 m for 8 h/day, 5 days/wk; the total number of exposures was 24-32. A control group was kept under normoxic conditions. Western blot analysis of PKC isoforms-delta and -epsilon was performed in the cytosol and three particulate fractions of left ventricular myocardium. Infarct size was determined in open-chest animals subjected to 20-min coronary artery occlusion and 3-h reperfusion. The PKC inhibitors chelerythrine (1 or 5 mg/kg) or rottlerin (selective for PKC-delta isoform; 0.3 mg/kg) were administered intravenously as a single bolus 15 min before ischemia. Chronic hypoxia had no effect on the expression and distribution of PKC-epsilon. The relative amount of PKC-delta increased in the cytosol and nuclear-cytoskeletal, mitochondrial, and microsomal fractions of chronically hypoxic myocardium by 100%, 212%, 237%, and 146%, respectively, compared with corresponding normoxic values. Chronic hypoxia decreased the size of myocardial infarction (normalized to the area at risk) by about one-third on the average (P < 0.05). Both doses of chelerythrine tended to reduce infarction in controls, and only the high dose completely abolished the improvement of ischemic tolerance in hypoxic hearts (P < 0.05). Rottlerin attenuated the infarct size-limiting effect of chronic hypoxia (P < 0.05), and it had no effect in controls. These results suggest that chronic intermittent hypoxia-induced cardioprotection in rats is partially mediated by PKC-delta; the contribution of other isoforms remains to be determined.


Asunto(s)
Hipoxia/metabolismo , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/enzimología , Proteína Quinasa C/metabolismo , Animales , Presión Sanguínea , Enfermedad Crónica , Inhibidores Enzimáticos/farmacología , Frecuencia Cardíaca , Ventrículos Cardíacos/enzimología , Hematócrito , Masculino , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C-delta , Proteína Quinasa C-epsilon , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA