Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Pharm ; 654: 123947, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38408553

RESUMEN

Photodynamic Therapy is a therapy based on combining a non-toxic compound, known as photosensitizer (PS), and irradiation with light of the appropriate wavelength to excite the PS molecule. The photon absorption by the PS leads to reactive oxygen species generation and a subsequent oxidative burst that causes cell damage and death. In this work, we report an antimicrobial nanodevice that uses the activity of curcumin (Cur) as a PS for antimicrobial Photodynamic Therapy (aPDT), based on mesoporous silica nanoparticles in which the action of the classical antibiotic PMB is synergistically combined with the aPDT properties of curcumin to combat bacteria. The synergistic effect of the designed gated device in combination with irradiation with blue LED light (470 nm) is evaluated against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis. The results show that the nanodevice exhibits a noteworthy antibacterial activity against these microorganisms, a much more significant effect than free Cur and PMB at equivalent concentrations. Thus, 0.1 µg/mL of MSNs-Cur-PMB eliminates a bacterial concentration of about 105 CFU/mL of E. coli, while 1 µg/mL of MSNs-Cur-PMB is required for P. aeruginosa and S. epidermidis. In addition, antibiofilm activity against the selected bacteria was also tested. We found that 0.1 mg/mL of MSNs-Cur-PMB inhibited 99 % biofilm formation for E. coli, and 1 mg/mL of MSNs-Cur-PMB achieved 90 % and 100 % inhibition of biofilm formation for S. epidermidis and P. aeruginosa, respectively.


Asunto(s)
Curcumina , Nanopartículas , Fotoquimioterapia , Polimixina B/farmacología , Curcumina/farmacología , Dióxido de Silicio/farmacología , Escherichia coli , Biopelículas , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Antibacterianos/farmacología , Pseudomonas aeruginosa
2.
Adv Healthc Mater ; 12(22): e2203326, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37285852

RESUMEN

In this work, fluorogenic probes based on oligonucleotide capped nanoporous anodic alumina films are developed for specific and sensitive detection of human papilloma virus (HPV) DNA. The probe consists of anodic alumina nanoporous films loaded with the fluorophore rhodamine B (RhB) and capped with oligonucleotides bearing specific base sequences complementary to genetic material of different high-risk (hr) HPV types. Synthesis protocol is optimized for scale up production of sensors with high reproducibility. The sensors' surfaces are characterized by scanning electron microscopy (HR-FESEM) and atomic force microscopy (AFM) and their atomic composition is determined by energy dispersive X-ray spectroscopy (EDXS). Oligonucleotide molecules onto nanoporous films block the pores and avoid diffusion of RhB to the liquid phase. Pore opening is produced when specific DNA of HPV is present in the medium, resulting in RhB delivery, that is detected by fluorescence measurements. The sensing assay is optimized for reliable fluorescence signal reading. Nine different sensors are synthesized for specific detection of 14 different hr-HPV types in clinical samples with very high sensitivity (100%) and high selectivity (93-100%), allowing rapid screening of virus infections with very high negative predictive values (100%).


Asunto(s)
Nanoporos , Infecciones por Papillomavirus , Humanos , Óxido de Aluminio/química , Oligonucleótidos , Virus del Papiloma Humano , Reproducibilidad de los Resultados , ADN
3.
Comput Methods Programs Biomed ; 226: 107185, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36279641

RESUMEN

BACKGROUND AND OBJECTIVE: Hyperthermia is a cancer treatment aiming to induce cell death by directly warming cancerous tissues above 40 °C. This technique can be applied both individually and together with other cancer therapies. The main challenge for researchers and medics is to heat only tumoral cells avoiding global or localized heating of sane tissues. The objective in this study is to provide a realistic virtual scenario to develop an optimized multi-site injection plan for tailored magnetic nanoparticle-mediated hyperthermia applications. METHODS: A three-dimensional model of a cat's back was tested in three different simulation scenarios, showing the impact of magnetic nanoparticles in each specific environment configuration. RESULTS: As a result of this study. This simulation method can, minimising the affection to healthy tissue. CONCLUSIONS: This virtual method will help real and personalized therapy planning and tailor the dose and distribution of magnetic nanoparticles for an enhanced hyperthermia cancer treatment.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Neoplasias , Humanos , Nanopartículas de Magnetita/uso terapéutico , Hipertermia Inducida/métodos , Magnetismo , Simulación por Computador , Neoplasias/terapia , Neoplasias/metabolismo
4.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36293142

RESUMEN

Cancer-related opportunistic bacterial infections are one major barrier for successful clinical therapies, often correlated to the production of genotoxic factors and higher cancer incidence. Although dual anticancer and antimicrobial therapies are a growing therapeutic fashion, they still fall short when it comes to specific delivery and local action in in vivo systems. Nanoparticles are seen as potential therapeutic vectors, be it by means of their intrinsic antibacterial properties and effective delivery capacity, or by means of their repeatedly reported modulation and maneuverability. Herein we report on the production of a biocompatible, antimicrobial magneto-fluorescent nanosystem (NANO3) for the delivery of a dual doxorubicin-ofloxacin formulation against cancer-related bacterial infections. The drug delivery capacity, rendered by its mesoporous silica matrix, is confirmed by the high loading capacity and stimuli-driven release of both drugs, with preference for tumor-like acidic media. The pH-dependent emission of its surface fluorescent SiQDs, provides an insight into NANO3 surface behavior and pore availability, with the SiQDs working as pore gates. Hyperthermia induces heat generation to febrile temperatures, doubling drug release. NANO3-loaded systems demonstrate significant antimicrobial activity, specifically after the application of hyperthermia conditions. NANO3 structure and antimicrobial properties confirm their potential use in a future dual anticancer and antimicrobial therapeutical vector, due to their drug loading capacity and their surface availability for further modification with bioactive, targeting species.


Asunto(s)
Antiinfecciosos , Neoplasias Colorrectales , Hipertermia Inducida , Nanopartículas , Humanos , Portadores de Fármacos/química , Ofloxacino , Porosidad , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Doxorrubicina/química , Dióxido de Silicio/química , Nanopartículas/química , Liberación de Fármacos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Sistemas de Liberación de Medicamentos
5.
Food Chem ; 383: 132460, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35182878

RESUMEN

Proton-nuclear-magnetic-resonance-spectroscopy (1H NMR) is the widely accepted reference method for monitoring honey adulteration; however, the need to find cheaper, faster, and more environmentally friendly methodologies makes the voltammetric-electronic-tongue (VET) a good alternative. The present study aims to demonstrate the ability of VET (in comparison with 1H NMR) to predict the adulteration of honey with syrups. Samples of monofloral honeys (citrus, sunflower and heather, assessed by pollen analysis) simulating different levels of adulteration by adding syrups (barley, rice and corn) from 2.5 to 40% (w/w) were analyzed using both techniques. According to the indicators (slope, intercept, regression coefficient-R2, root mean square error of prediction-RMSEP) of the partial-least-squares (PLS) regression models, in general terms, the performance of these models obtained by both techniques was good, with an average error lower than 5% in both cases. These results support the use of VET as a screening technique to easily detect honey adulteration with syrups.


Asunto(s)
Miel , Nariz Electrónica , Contaminación de Alimentos/análisis , Miel/análisis , Análisis de los Mínimos Cuadrados , Espectroscopía de Resonancia Magnética/métodos , Polen
6.
Nanoscale ; 13(18): 8648-8657, 2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33942038

RESUMEN

Many important human diseases, and especially cancer, have been related to the overproduction of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG). This molecule is a product of oxidative stress processes over nucleophilic bases in DNA. In this work, an aptasensor for the rapid, selective and accurate detection of this oncomarker is presented. The aptasensor consists of a nanoporous anodic alumina material loaded with a dye and is functionalized with an aptamer-based "molecular gate". In the presence of target 8-oxo-dG, the capping aptamer displaces from the surface due to the high affinity of the analyte with the capping aptamer, thus inducing delivery of the preloaded fluorescent dye. In contrast, in the absence of 8-oxo-dG, a poor payload delivery is accomplished. This aptamer-based nanodevice has great sensitivity for 8-oxo-dG, resulting in a LOD of 1 nM and a detection time of ca. 60 min. Moreover, the aptasensor is able to accurately detect 8-oxo-dG in unmodified urine and serum without pre-concentration treatments. This diagnostic tool is validated in a set of 38 urine and serum samples from patients diagnosed of colorectal cancer and control patients. These samples are also analyzed using a standardized and specific ELISA kit. The aptasensor displays excellent sensitivity (95.83/100%) and specificity (80/100%) for 8-oxo-dG detection in serum and urine samples, respectively. Our results may serve as a basis for the development of generalized fluorogenic diagnostic platforms for the easy diagnosis of cancer in biofluids as well as for monitoring therapeutic treatments and detection of relapses without the use of expensive equipment or trained personnel.


Asunto(s)
Neoplasias Colorrectales , Nanoporos , 8-Hidroxi-2'-Desoxicoguanosina , Óxido de Aluminio , Neoplasias Colorrectales/diagnóstico , Desoxiguanosina , Humanos
7.
ACS Sens ; 6(3): 1022-1029, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33599490

RESUMEN

Circulating microRNAs have emerged as potential diagnostic biomarkers. The deregulation of the microRNA miR-99a-5p has been previously described as an effective biomarker of early breast cancer. Herein, we present a new nanoporous anodic alumina (NAA)-based biosensor that can detect plasma miR-99a-5p with high sensitivity and selectivity. NAA pores are loaded with rhodamine B and capped with a specific oligonucleotide that is able to block cargo release until the target is present. In the presence of miR-99a-5p, the capping oligonucleotide recognizes the miR-99a-5p sequence and displaces it allowing the release of the encapsulated dye. This method is able to successfully distinguish healthy controls from breast cancer patients, even at early stages with high efficiency, showing the presented system as a promising tool for breast cancer detection.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Nanoporos , Óxido de Aluminio , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Electrodos , Humanos , MicroARNs/genética
8.
Emerg Microbes Infect ; 10(1): 407-415, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33372852

RESUMEN

Candida auris has arisen as an important multidrug-resistant fungus because of several nosocomial outbreaks and elevated rates of mortality. Accurate and rapid diagnosis of C. auris is highly desired; nevertheless, current methods often present severe limitations and produce misidentification. Herein a sensitive, selective, and time-competitive biosensor based on oligonucleotide-gated nanomaterials for effective detection of C. auris is presented. In the proposed design, a nanoporous anodic alumina scaffold is filled with the fluorescent indicator rhodamine B and the pores blocked with different oligonucleotides capable of specifically recognize C. auris genomic DNA. Gate opening modulation and cargo delivery is controlled by successful DNA recognition. C. auris is detected at a concentration as low as 6 CFU/mL allowing obtaining a diagnostic result in clinical samples in one hour with no prior DNA extraction or amplification steps.


Asunto(s)
Técnicas Biosensibles/métodos , Candida/aislamiento & purificación , Candidiasis/diagnóstico , Oligonucleótidos/genética , Óxido de Aluminio , Candida/genética , Diagnóstico Precoz , Humanos , Técnicas de Diagnóstico Molecular , Nanoporos , Oligonucleótidos/química , Rodaminas/química , Sensibilidad y Especificidad , Factores de Tiempo
9.
ACS Sens ; 4(5): 1291-1298, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31020831

RESUMEN

A robust, sensitive, and time-competitive system to detect Candida albicans in less than 30 min in clinical samples based in capped nanoporous anodic alumina (NAA) is developed. In the proposed design, NAA pores are loaded with rhodamine B and then blocked with an oligonucleotide that is able to recognize C. albicans DNA. The capped material shows negligible cargo release, whereas dye delivery is selectively accomplished when genomic DNA from C. albicans is present. This procedure has been successfully applied to detect C. albicans in clinical samples from patients infected with this yeast. When compared with classical C. albicans detection methods, the proposed probe has a short assay time, high sensitivity and selectivity, demonstrating the high potential of this simple design for the diagnosis of infection produced by C. albicans.


Asunto(s)
Óxido de Aluminio/química , Técnicas Biosensibles/métodos , Candida albicans/aislamiento & purificación , Nanoporos , Oligonucleótidos/química , Candida albicans/genética , Candida albicans/fisiología , ADN de Hongos/análisis , ADN de Hongos/química , Humanos , Límite de Detección , Factores de Tiempo
10.
Chemistry ; 25(36): 8471-8478, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31012155

RESUMEN

Janus gold nanostar-mesoporous silica nanoparticle (AuNSt-MSNP) nanodevices able to release an entrapped payload upon irradiation with near infrared (NIR) light were prepared and characterized. The AuNSt surface was functionalized with a thiolated photolabile molecule (5), whereas the mesoporous silica face was loaded with a model drug (doxorubicin) and capped with proton-responsive benzimidazole-ß-cyclodextrin supramolecular gatekeepers (N 1). Upon irradiation with NIR-light, the photolabile compound 5 photodissociated, resulting in the formation of succinic acid, which induced the opening of the gatekeeper and cargo delivery. In the overall mechanism, the gold surface acts as a photochemical transducer capable of transforming the NIR-light input into a chemical messenger (succinic acid) that opens the supramolecular nanovalve. The prepared hybrid nanoparticles were non-cytotoxic to HeLa cells, until they were irradiated with a NIR laser, which led to intracellular doxorubicin release and hyperthermia. This induced a remarkable reduction in HeLa cells viability.


Asunto(s)
Portadores de Fármacos/química , Oro/química , Rayos Infrarrojos , Nanoestructuras/química , Dióxido de Silicio/química , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacología , Humanos , Hipertermia Inducida , Microscopía Confocal , Nanoestructuras/toxicidad , Porosidad
11.
Artif Cells Nanomed Biotechnol ; 46(sup2): 527-538, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29688037

RESUMEN

Whether in the cosmetic or as therapeutic, the use of nanoparticles has been increasing and taking on global proportion. However, there are few studies about the physical potential of long-term use or use in special conditions such as chronic, AIDS, pregnant women and other special health circumstances. In this context, the study of the mutagenicity and the transplacental passage represents an important and reliable model for the primary evaluation of potential health risks, especially maternal and child health. In this study we performed mutagenicity, cytotoxic and transplacental evaluation of magnetic core mesoporous silica nanoparticles, radiolabeled with 99mTc for determination of toxicogenic and embryonic/fetuses potential risk in animal model. Magnetic core mesoporous silica nanoparticles were produced and characterized by obtaining nanoparticles with a size of (58.9 ± 8.1 nm) in spherical shape and with intact magnetic core. The 99 m Tc radiolabeling process demonstrated high efficacy and stability in 98% yield over a period of 8 hours of stability. Mutagenicity assays were performed using Salmonella enteric serovar Typhimurium standard strains TA98, TA100 and TA102. Cytotoxicity assays were performed using WST-1. The transplacental evaluation assays were performed using the in vivo model with rats in two periods: embryonic and fetal stage. The results of both analyzes corroborate that the nanoparticles can i) generate DNA damage; ii) generate cytotoxic potential and iii) cross the transplantation barrier in both stages and bioaccumulates in both embryos and fetuses. The results suggest that complementary evaluations should be conducted in order to attest safety, efficacy and quality of nanoparticles before unrestricted approval of their use.


Asunto(s)
Fenómenos Magnéticos , Nanopartículas , Placenta/metabolismo , Dióxido de Silicio/química , Dióxido de Silicio/toxicidad , Animales , Transporte Biológico , Citotoxinas/química , Citotoxinas/metabolismo , Citotoxinas/toxicidad , Daño del ADN , Femenino , Células Hep G2 , Humanos , Mutágenos/química , Mutágenos/metabolismo , Mutágenos/toxicidad , Porosidad , Embarazo , Ratas , Ratas Wistar , Dióxido de Silicio/metabolismo , Factores de Tiempo
12.
Food Chem ; 218: 471-478, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27719938

RESUMEN

Folic acid (FA) is a synthetic vitamin commonly used for food fortification. However, its vulnerability to processing and storage implies loss of efficiency, which would induce over-fortification by processors to obtain a minimum dose upon consumption. Recent studies have indicated potential adverse effects of FA overdoses, and FA protection during processing and storage could lead to more accurate fortification. In addition, sustained vitamin release after consumption would help improve its metabolism. The objective of this work was to study controlled FA delivery and stability in fruit juices to reduce potential over-fortification risks by using gated mesoporous silica particles (MSPs). The obtained results indicated that FA encapsulation in MSPs significantly improved its stability and contributed to controlled release after consumption by modifying vitamin bioaccessibility. These results confirmed the suitability of MSPs as support for controlled release and protection of bioactive molecules in food matrices in different food production and storage stages.


Asunto(s)
Ácido Fólico/administración & dosificación , Alimentos Fortificados , Jugos de Frutas y Vegetales , Dióxido de Silicio/administración & dosificación , Estabilidad de Medicamentos , Almacenamiento de Alimentos
13.
J Sci Food Agric ; 95(14): 2824-31, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25428206

RESUMEN

BACKGROUND: Essential oil components (EOCs) are known for their antifungal properties; however, their high volatility limits their application as antimicrobial agents. Strategies used for controlling the volatility of EOCs include encapsulation or loading into porous materials. This study evaluated the in vitro antifungal activity of selected EOCs (carvacrol, cinnamaldehyde, eugenol and thymol) against the fungus Aspergillus niger when loaded into MCM-41 and ß-cyclodextrin (ß-CD). RESULTS: Carvacrol and thymol in Mobil Composition of Matter No. 41 (MCM-41) displayed remarkable enhanced antifungal properties in comparison to the pure or ß-CD-encapsulated EOCs. In fact, carvacrol and thymol were able to maintain antifungal activity and inhibit fungal growth for 30 days, suggesting better applicability of these EOCs as natural preservatives. CONCLUSIONS: The sustained antifungal effect of EOCs encapsulated into silica mesoporous supports was described.


Asunto(s)
Antifúngicos/farmacología , Aspergillus niger/efectos de los fármacos , Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Antifúngicos/química , Aspergillus niger/crecimiento & desarrollo , Cinamatos/química , Cinamatos/farmacología , Microbiología de Alimentos , Conservantes de Alimentos/química , Humanos , Monoterpenos/química , Monoterpenos/farmacología , Aceites Volátiles/química , Extractos Vegetales/química , Aceites de Plantas/química , Aceites de Plantas/farmacología , Dióxido de Silicio , Volatilización , beta-Ciclodextrinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA