Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 15811, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737222

RESUMEN

Self-induced cognitive trance (SICT) is a voluntary non-ordinary state of consciousness characterized by a lucid yet narrowed awareness of the external surroundings. It involves a hyper-focused immersive experience of flow, expanded inner imagery, modified somatosensory processing, and an altered perception of self and time. SICT is gaining attention due to its potential clinical applications. Similar states of non-ordinary state of consciousness, such as meditation, hypnosis, and psychedelic experiences, have been reported to induce changes in the autonomic nervous system. However, the functioning of the autonomic nervous system during SICT remains poorly understood. In this study, we aimed to investigate the impact of SICT on the cardiac and respiratory signals of 25 participants proficient in SICT. To accomplish this, we measured various metrics of heart rate variability (HRV) and respiration rate variability (RRV) in three conditions: resting state, SICT, and a mental imagery task. Subsequently, we employed a machine learning framework utilizing a linear discriminant analysis classifier and a cross-validation scheme to identify the features that exhibited the best discrimination between these three conditions. The results revealed that during SICT, participants experienced an increased heart rate and a decreased level of high-frequency (HF) HRV compared to the control conditions. Additionally, specific increases in respiratory amplitude, phase ratio, and RRV were observed during SICT in comparison to the other conditions. These findings suggest that SICT is associated with a reduction in parasympathetic activity, indicative of a hyperarousal state of the autonomic nervous system during SICT.


Asunto(s)
Estado de Conciencia , Alucinógenos , Humanos , Sistema Nervioso Autónomo , Benchmarking , Análisis Discriminante
2.
Cortex ; 165: 119-128, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37285762

RESUMEN

Lemon fragrance is known for its stimulating properties, but its mechanisms of action are not well known yet. This study aimed to examine the effect of lemon essential oil inhalation on healthy participants' alertness level and their neural correlates using magnetic resonance imaging (MRI). Twenty-one healthy men underwent functional MRI scans in different conditions: a resting state condition, a condition where they were exposed to passive lemon smelling (alternating exposure to lemon and breathing fresh air), and a control condition without lemon fragrance diffusion -the order of the last two conditions being randomized. Alertness levels were assessed immediately after each condition using the Karolinska Sleepiness Scale. Voxel-wise whole-brain global functional connectivity and graph theory analyses were computed to investigate brain functional connectivity and network topology alterations. After lemon fragrance inhalation, we observed a higher level of alertness as compared to resting state -but not compared to control condition. During lemon fragrance inhalation, we found increased global functional connectivity in the thalamus, paralleled by decreased global connectivity in several cortical regions such as precuneus, postcentral and precentral gyrus, lateral occipital cortex and paracingulate gyrus. Graph theory analysis revealed increased network integration in cortical regions typically involved in olfaction and emotion processing such as olfactory bulb, hypothalamus and thalamus, while decreased network segregation in several regions of the posterior part of the brain during olfaction as compared to resting state. The present findings suggest that lemon essential oil inhalation could increase the level of alertness.


Asunto(s)
Mapeo Encefálico , Encéfalo , Masculino , Humanos , Imagen por Resonancia Magnética/métodos , Atención , Tálamo/diagnóstico por imagen
3.
Sci Rep ; 9(1): 14047, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575924

RESUMEN

The neurobiological basis of near-death experiences (NDEs) is unknown, but a few studies attempted to investigate it by reproducing in laboratory settings phenomenological experiences that seem to closely resemble NDEs. So far, no study has induced NDE-like features via hypnotic modulation while simultaneously measuring changes in brain activity using high-density EEG. Five volunteers who previously had experienced a pleasant NDE were invited to re-experience the NDE memory and another pleasant autobiographical memory (dating to the same time period), in normal consciousness and with hypnosis. We compared the hypnosis-induced subjective experience with the one of the genuine experience memory. Continuous high-density EEG was recorded throughout. At a phenomenological level, we succeeded in recreating NDE-like features without any adverse effects. Absorption and dissociation levels were reported as higher during all hypnosis conditions as compared to normal consciousness conditions, suggesting that our hypnosis-based protocol increased the felt subjective experience in the recall of both memories. The recall of a NDE phenomenology was related to an increase of alpha activity in frontal and posterior regions. This study provides a proof-of-concept methodology for studying the phenomenon, enabling to prospectively explore the NDE-like features and associated EEG changes in controlled settings.


Asunto(s)
Encéfalo/fisiología , Muerte , Hipnosis , Recuerdo Mental/fisiología , Adulto , Electroencefalografía , Femenino , Humanos , Masculino , Memoria Episódica , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA