RESUMEN
Exposure to elevated levels of diacetyl in flavoring and microwave popcorn production has been associated with respiratory impairment among workers including from a severe lung disease known as obliterative bronchiolitis. Laboratory studies demonstrate damage to the respiratory tract in rodents exposed to either diacetyl or the related alpha-diketone 2,3-pentanedione. Respiratory tract damage includes the development of obliterative bronchiolitis-like changes in the lungs of rats repeatedly inhaling either diacetyl or 2,3-pentanedione. In one flavored coffee processing facility, current workers who spent time in higher diacetyl and 2,3-pentanedione areas had lower lung function values, while five former flavoring room workers were diagnosed with obliterative bronchiolitis. In that and other coffee roasting and packaging facilities, grinding roasted coffee beans has been identified as contributing to elevated levels of diacetyl and 2,3-pentanedione. To reduce worker exposures, employers can take various actions to control exposures according to the hierarchy of controls. Because elimination or substitution is not applicable to coffee production facilities not using flavorings, use of engineering controls to control exposures at their source is especially important. This work demonstrates the use of temporary ventilated enclosures around grinding equipment in a single coffee roasting and packaging facility to mitigate diacetyl and 2,3-pentanedione emissions from grinding equipment to the main production space. Concentrations of diacetyl and 2,3-pentanedione were measured in various locations throughout the main production space as well as inside and outside of ventilated enclosures to evaluate the effect of the enclosures on exposures. Diacetyl and 2,3-pentanedione concentrations outside one grinder enclosure decreased by 95 and 92%, respectively, despite ground coffee production increasing by 12%, after the enclosure was installed. Outside a second enclosure, diacetyl and 2,3-pentanedione concentrations both decreased 84%, greater than the 33% decrease in ground coffee production after installation. Temporary ventilated enclosures used as engineering control measures in this study effectively reduced emissions of diacetyl and 2,3-pentanedione at the source in this facility. These findings motivated management to explore options with a grinding equipment manufacturer to permanently ventilate their grinders to reduce emissions of diacetyl and 2,3-pentanedione.
Asunto(s)
Bronquiolitis , Exposición Profesional , Animales , Café , Diacetil/análisis , Aromatizantes/análisis , Exposición Profesional/análisis , Exposición Profesional/prevención & control , Pentanonas , RatasRESUMEN
Roasted coffee and many coffee flavorings emit volatile organic compounds (VOCs) including diacetyl and 2,3-pentanedione. Exposures to VOCs during roasting, packaging, grinding, and flavoring coffee can negatively impact the respiratory health of workers. Inhalational exposures to diacetyl and 2,3-pentanedione can cause obliterative bronchiolitis. This study summarizes exposures to and emissions of VOCs in 17 coffee roasting and packaging facilities that included 10 cafés. We collected 415 personal and 760 area full-shift, and 606 personal task-based air samples for diacetyl, 2,3-pentanedione, 2,3-hexanedione, and acetoin using silica gel tubes. We also collected 296 instantaneous activity and 312 instantaneous source air measurements for 18 VOCs using evacuated canisters. The highest personal full-shift exposure in part per billion (ppb) to diacetyl [geometric mean (GM) 21 ppb; 95th percentile (P95) 79 ppb] and 2,3-pentanedione (GM 15 ppb; P95 52 ppb) were measured for production workers in flavored coffee production areas. These workers also had the highest percentage of measurements above the NIOSH Recommended Exposure Limit (REL) for diacetyl (95%) and 2,3-pentanedione (77%). Personal exposures to diacetyl (GM 0.9 ppb; P95 6.0 ppb) and 2,3-pentanedione (GM 0.7 ppb; P95 4.4 ppb) were the lowest for non-production workers of facilities that did not flavor coffee. Job groups with the highest personal full-shift exposures to diacetyl and 2,3-pentanedione were flavoring workers (GM 34 and 38 ppb), packaging workers (GM 27 and 19 ppb) and grinder operator (GM 26 and 22 ppb), respectively, in flavored coffee facilities, and packaging workers (GM 8.0 and 4.4 ppb) and production workers (GM 6.3 and 4.6 ppb) in non-flavored coffee facilities. Baristas in cafés had mean full-shift exposures below the RELs (GM 4.1 ppb diacetyl; GM 4.6 ppb 2,3-pentanedione). The tasks, activities, and sources associated with flavoring in flavored coffee facilities and grinding in non-flavored coffee facilities, had some of the highest GM and P95 estimates for both diacetyl and 2,3-pentanedione. Controlling emissions at grinding machines and flavoring areas and isolating higher exposure areas (e.g., flavoring, grinding, and packaging areas) from the main production space and from administrative or non-production spaces is essential for maintaining exposure control.
Asunto(s)
Exposición Profesional , Compuestos Orgánicos Volátiles , Café/efectos adversos , Diacetil/efectos adversos , Humanos , Exposición Profesional/análisis , Pentanonas , Estados Unidos , Compuestos Orgánicos Volátiles/análisisRESUMEN
Obliterative bronchiolitis in five former coffee processing employees at a single workplace prompted an exposure study of current workers. Exposure characterization was performed by observing processes, assessing the ventilation system and pressure relationships, analyzing headspace of flavoring samples, and collecting and analyzing personal breathing zone and area air samples for diacetyl and 2,3-pentanedione vapors and total inhalable dust by work area and job title. Mean airborne concentrations were calculated using the minimum variance unbiased estimator of the arithmetic mean. Workers in the grinding/packaging area for unflavored coffee had the highest mean diacetyl exposures, with personal concentrations averaging 93 parts per billion (ppb). This area was under positive pressure with respect to flavored coffee production (mean personal diacetyl levels of 80 ppb). The 2,3-pentanedione exposures were highest in the flavoring room with mean personal exposures of 122 ppb, followed by exposures in the unflavored coffee grinding/packaging area (53 ppb). Peak 15-min airborne concentrations of 14,300 ppb diacetyl and 13,800 ppb 2,3-pentanedione were measured at a small open hatch in the lid of a hopper containing ground unflavored coffee on the mezzanine over the grinding/packaging area. Three out of the four bulk coffee flavorings tested had at least a factor of two higher 2,3-pentanedione than diacetyl headspace measurements. At a coffee processing facility producing both unflavored and flavored coffee, we found the grinding and packaging of unflavored coffee generate simultaneous exposures to diacetyl and 2,3-pentanedione that were well in excess of the NIOSH proposed RELs and similar in magnitude to those in the areas using a flavoring substitute for diacetyl. These findings require physicians to be alert for obliterative bronchiolitis and employers, government, and public health consultants to assess the similarities and differences across the industry to motivate preventive intervention where indicated by exposures above the proposed RELs for diacetyl and 2,3-pentanedione.
Asunto(s)
Contaminantes Ocupacionales del Aire , Café , Diacetil/análisis , Exposición Profesional/análisis , Pentanonas/análisis , Contaminantes Ocupacionales del Aire/análisis , Bronquiolitis Obliterante/prevención & control , Polvo/análisis , Aromatizantes/análisis , Industria de Procesamiento de Alimentos/métodos , HumanosRESUMEN
RATIONALE: Obliterative bronchiolitis in former coffee workers prompted a cross-sectional study of current workers. Diacetyl and 2,3-pentanedione levels were highest in areas for flavoring and grinding/packaging unflavored coffee. METHODS: We interviewed 75 (88%) workers, measured lung function, and created exposure groups based on work history. We calculated standardized morbidity ratios (SMRs) for symptoms and spirometric abnormalities. We examined health outcomes by exposure groups. RESULTS: SMRs were elevated 1.6-fold for dyspnea and 2.7-fold for obstruction. The exposure group working in both coffee flavoring and grinding/packaging of unflavored coffee areas had significantly lower mean ratio of forced expiratory volume in 1 s to forced vital capacity and percent predicted mid-expiratory flow than workers without such exposure. CONCLUSION: Current workers have occupational lung morbidity associated with high diacetyl and 2,3-pentanedione exposures, which were not limited to flavoring areas.