Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pediatr Nephrol ; 38(7): 2083-2092, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36472654

RESUMEN

BACKGROUND: With declining kidney function and therefore increasing plasma oxalate, patients with primary hyperoxaluria type I (PHI) are at risk to systemically deposit calcium-oxalate crystals. This systemic oxalosis may occur even at early stages of chronic kidney failure (CKD) but is difficult to detect with non-invasive imaging procedures. METHODS: We tested if magnetic resonance imaging (MRI) is sensitive to detect oxalate deposition in bone. A 3 Tesla MRI of the left knee/tibial metaphysis was performed in 46 patients with PHI and in 12 healthy controls. In addition to the investigator's interpretation, signal intensities (SI) within a region of interest (ROI, transverse images below the level of the physis in the proximal tibial metaphysis) were measured pixelwise, and statistical parameters of their distribution were calculated. In addition, 52 parameters of texture analysis were evaluated. Plasma oxalate and CKD status were correlated to MRI findings. MRI was then implemented in routine practice. RESULTS: Independent interpretation by investigators was consistent in most cases and clearly differentiated patients from controls. Statistically significant differences were seen between patients and controls (p < 0.05). No correlation/relation between the MRI parameters and CKD stages or Pox levels was found. However, MR imaging of oxalate osteopathy revealed changes attributed to clinical status which differed clearly to that in secondary hyperparathyroidism. CONCLUSIONS: MRI is able to visually detect (early) oxalate osteopathy in PHI. It can be used for its monitoring and is distinguished from renal osteodystrophy. In the future, machine learning algorithms may aid in the objective assessment of oxalate deposition in bone. Graphical Abstract A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Hiperoxaluria Primaria , Hiperoxaluria , Fallo Renal Crónico , Humanos , Oxalatos , Hiperoxaluria Primaria/diagnóstico , Hiperoxaluria Primaria/diagnóstico por imagen , Hiperoxaluria/complicaciones , Oxalato de Calcio
2.
Nephrol Dial Transplant ; 34(6): 908-914, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30169827

RESUMEN

The primary hyperoxalurias (PHs) are inborn errors of glyoxylate metabolism characterized by endogenous oxalate overproduction in the liver, and thus elevated urinary oxalate excretion. The urinary calcium-oxalate (CaOx) supersaturation and the continuous renal accumulation of insoluble CaOx crystals yield a progressive decline in renal function that often ends with renal failure. In PH Type 1 (AGXT mutated), the most frequent and severe condition, patients typically progress to end-stage renal disease (ESRD); in PH Type 2 (GRHPR mutated), 20% of patients develop ESRD, while only one patient with PH Type 3 (HOGA1 mutated) has been reported with ESRD so far. Patients with ESRD undergo frequent maintenance (haemo)dialysis treatment, and finally must receive a combined liver-kidney transplantation as the only curative treatment option available in PH Type 1. In experimental models using oxalate-enriched chow, CaOx crystals were bound to renal tubular cells, promoting a pro-inflammatory environment that led to fibrogenesis in the renal parenchyma by activation of a NACHT, LRR and PYD domains-containing protein 3 (NALP3)-dependent inflammasome in renal dendritic cells and macrophages. Chronic fibrogenesis progressively impaired renal function. Targeting the inflammatory response has recently been suggested as a therapeutic strategy to treat not only oxalate-induced crystalline nephropathies, but also those characterized by accumulation of cystine and urate in other organs. Herein, we summarize the pathogenesis of PH, revising the current knowledge of the CaOx-mediated inflammatory response in animal models of endogenous oxalate overproduction. Furthermore, we highlight the possibility of modifying the NLRP3-dependent inflammasome as a new and complementary therapeutic strategy to treat this severe and devastating kidney disease.


Asunto(s)
Oxalato de Calcio/metabolismo , Hiperoxaluria Primaria/terapia , Fallo Renal Crónico/complicaciones , Nefritis/terapia , Adolescente , Adulto , Animales , Niño , Preescolar , Modelos Animales de Enfermedad , Humanos , Lactante , Inflamasomas/metabolismo , Riñón/patología , Trasplante de Riñón/efectos adversos , Macrófagos/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nefritis/metabolismo , Oxalatos/metabolismo , Interferencia de ARN , Diálisis Renal/efectos adversos , Insuficiencia Renal/complicaciones , Ácido Úrico/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA