Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Planta ; 253(2): 29, 2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33423117

RESUMEN

MAIN CONCLUSION: Silicon inhibits the growth of Alternaria alternata into sorghum root cells by maintaining their integrity through stimulating biochemical defense reactions rather than by silica-based physical barrier creation. Although the ameliorating effect of silicon (Si) on plant resistance against fungal pathogens has been proven, the mechanism of its action needs to be better understood on a cellular level. The present study explores the effect of Si application in sorghum roots infected with fungus Alternaria alternata under controlled in vitro conditions. Detailed anatomical and cytological observations by both fluorescent and electron microscopy revealed that Si supplementation results in the inhibition of fungal hyphae growth into the protoplast of root cells. An approach of environmental scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy enabling spatial detection of Si even at low concentrations showed that there is no continual solid layer of silica in the root cell walls of the rhizodermis, mesodermis and exodermis physically blocking the fungal growth into the protoplasts. Additionally, biochemical evidence suggests that Si speeds up the onset of activities of phenylpropanoid pathway enzymes phenylalanine ammonia lyase, peroxidases and polyphenol oxidases involved in phenolic compounds production and deposition to plant cell walls. In conclusion, Si alleviates the negative impact of A. alternata infection by limiting hyphae penetration through sorghum root cell walls into protoplasts, thus maintaining their structural and functional integrity. This might occur by triggering plant biochemical defense responses rather than by creating compact Si layer deposits.


Asunto(s)
Alternaria , Raíces de Plantas , Silicio , Sorghum , Alternaria/efectos de los fármacos , Fenilanina Amoníaco-Liasa , Enfermedades de las Plantas/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/microbiología , Silicio/farmacología , Sorghum/efectos de los fármacos , Sorghum/enzimología , Sorghum/microbiología
2.
Ann Bot ; 120(5): 739-753, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-28651339

RESUMEN

Background and Aims: Deposition of silica in plant cell walls improves their mechanical properties and helps plants to withstand various stress conditions. Its mechanism is still not understood and silica-cell wall interactions are elusive. The objective of this study was to investigate the effect of silica deposition on the development and structure of sorghum root endodermis and to identify the cell wall components involved in silicification. Methods: Sorghum bicolor seedlings were grown hydroponically with (Si+) or without (Si-) silicon supplementation. Primary roots were used to investigate the transcription of silicon transporters by quantitative RT-PCR. Silica aggregation was induced also under in vitro conditions in detached root segments. The development and architecture of endodermal cell walls were analysed by histochemistry, microscopy and Raman spectroscopy. Water retention capability was compared between silicified and non-silicified roots. Raman spectroscopy analyses of isolated silica aggregates were also carried out. Key Results: Active uptake of silicic acid is provided at the root apex, where silicon transporters Lsi1 and Lsi2 are expressed. The locations of silica aggregation are established during the development of tertiary endodermal cell walls, even in the absence of silicon. Silica aggregation takes place in non-lignified spots in the endodermal cell walls, which progressively accumulate silicic acid, and its condensation initiates at arabinoxylan-ferulic acid complexes. Silicification does not support root water retention capability; however, it decreases root growth inhibition imposed by desiccation. Conclusion: A model is proposed in which the formation of silica aggregates in sorghum roots is predetermined by a modified cell wall architecture and takes place as governed by endodermal development. The interaction with silica is provided by arabinoxylan-ferulic acid complexes and interferes with further deposition of lignin. Due to contrasting hydrophobicity, silicification and lignification do not represent functionally equivalent modifications of plant cell walls.


Asunto(s)
Raíces de Plantas/crecimiento & desarrollo , Dióxido de Silicio/química , Sorghum/crecimiento & desarrollo , Pared Celular/química , Raíces de Plantas/metabolismo , Sorghum/metabolismo
3.
Ann Bot ; 110(2): 475-8, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22419758

RESUMEN

BACKGROUND AND AIMS: Cutting plant material is essential for observing internal structures and may be difficult for various reasons. Most fixation agents such as aldehydes, as well as embedding resins, do not allow subsequent use of fluorescent staining and make material too soft to make good-quality hand-sections. Moreover, cutting thin roots can be very difficult and time consuming. A new, fast and effective method to provide good-quality sections and fluorescent staining of fresh or fixed root samples, including those of very thin roots (such as Arabidopsis or Noccaea), is described here. METHODS: To overcome the above-mentioned difficulties the following procedure is proposed: fixation in methanol (when fresh material cannot be used) followed by en bloc staining with toluidine blue, embedding in 6 % agarose, preparation of free-hand sections of embedded material, staining with fluorescent dye, and observation in a microscope under UV light. KEY RESULTS: Despite eventual slight deformation of primary cell walls (depending on the species and root developmental stage), this method allows effective observation of different structures such as ontogenetic changes of cells along the root axis, e.g. development of xylem elements, deposition of Casparian bands and suberin lamellae in endodermis or exodermis or peri-endodermal thickenings in Noccaea roots. CONCLUSIONS: This method provides good-quality sections and allows relatively rapid detection of cell-wall modifications. Also important is the possibility of using this method for free-hand cutting of extremely thin roots such as those of Arabidopsis.


Asunto(s)
Pared Celular/ultraestructura , Microscopía Fluorescente/métodos , Microtomía/métodos , Raíces de Plantas/citología , Coloración y Etiquetado/métodos , Arabidopsis/citología , Brassica napus/citología , Colorantes Fluorescentes , Cebollas/citología , Manejo de Especímenes , Triticum/citología , Zea mays/citología
4.
Ann Bot ; 107(2): 285-92, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21118841

RESUMEN

BACKGROUND AND AIMS: Merwilla plumbea is an important African medicinal plant. As the plants grow in soils contaminated with metals from mining activities, the danger of human intoxication exists. An experiment with plants exposed to cadmium (Cd) was performed to investigate the response of M. plumbea to this heavy metal, its uptake and translocation to plant organs and reaction of root tissues. METHODS: Plants grown from seeds were cultivated in controlled conditions. Hydroponic cultivation is not suitable for this species as roots do not tolerate aquatic conditions, and additional stress by Cd treatment results in total root growth inhibition and death. After cultivation in perlite the plants exposed to 1 and 5 mg Cd L(-1) in half-strength Hoagland's solution were compared with control plants. Growth parameters were evaluated, Cd content was determined by inductively coupled plasma mass spectroscopy (ICP-MS) and root structure was investigated using various staining procedures, including the fluorescent stain Fluorol yellow 088 to detect suberin deposition in cell walls. KEY RESULTS: The plants exposed to Cd were significantly reduced in growth. Most of the Cd taken up by plants after 4 weeks cultivation was retained in roots, and only a small amount was translocated to bulbs and leaves. In reaction to higher Cd concentrations, roots developed a hypodermal periderm close to the root tip. Cells produced by cork cambium impregnate their cell walls by suberin. CONCLUSIONS: It is suggested that the hypodermal periderm is developed in young root parts in reaction to Cd toxicity to protect the root from radial uptake of Cd ions. Secondary meristems are usually not present in monocotyledonous species. Another interpretation explaining formation of protective suberized layers as a result of periclinal divisions of the hypodermis is discussed. This process may represent an as yet unknown defence reaction of roots when exposed to elemental stress.


Asunto(s)
Cadmio/toxicidad , Liliaceae/anatomía & histología , Liliaceae/crecimiento & desarrollo , Raíces de Plantas/anatomía & histología , Cadmio/análisis , Liliaceae/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Plantas Medicinales/anatomía & histología , Plantas Medicinales/efectos de los fármacos , Plantas Medicinales/crecimiento & desarrollo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA