Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biol Lett ; 14(10)2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30333263

RESUMEN

Insects have evolved a diversity of hearing organs specialized to detect sounds critical for survival. We report on a unique structure on butterfly wings that enhances hearing. The Satyrini are a diverse group of butterflies occurring throughout the world. One of their distinguishing features is a conspicuous swelling of their forewing vein, but the functional significance of this structure is unknown. Here, we show that wing vein inflations function in hearing. Using the common wood nymph, Cercyonis pegala, as a model, we show that (i) these butterflies have ears on their forewings that are most sensitive to low frequency sounds (less than 5 kHz); (ii) inflated wing veins are directly connected to the ears; and (iii) when vein inflations are ablated, sensitivity to low frequency sounds is impaired. We propose that inflated veins contribute to low frequency hearing by impedance matching.


Asunto(s)
Mariposas Diurnas/fisiología , Alas de Animales/anatomía & histología , Estimulación Acústica , Animales , Femenino , Audición , Masculino , Microscopía Electrónica de Rastreo , Membrana Timpánica/fisiología , Membrana Timpánica/ultraestructura , Alas de Animales/fisiología
2.
Oecologia ; 172(3): 805-16, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23188056

RESUMEN

Buzz-pollination is a plant strategy that promotes gamete transfer by requiring a pollinator, typically bees (Hymenoptera: Apoidea), to vibrate a flower's anthers in order to extract pollen. Although buzz-pollination is widespread in angiosperms with over 20,000 species using it, little is known about the functional connection between natural variation in buzzing vibrations and the amount of pollen that can be extracted from anthers. We characterized variability in the vibrations produced by Bombus terrestris bumblebees while collecting pollen from Solanum rostratum (Solanaceae), a buzz-pollinated plant. We found substantial variation in several buzzing properties both within and among workers from a single colony. As expected, some of this variation was predicted by the physical attributes of individual bumblebees: heavier workers produced buzzes of greater amplitude. We then constructed artificial "pollination buzzes" that varied in three parameters (peak frequency, peak amplitude, and duration), and stimulated S. rostratum flowers with these synthetic buzzes to quantify the relationship between buzz properties and pollen removal. We found that greater amplitude and longer duration buzzes ejected substantially more pollen, while frequency had no directional effect and only a weak quadratic effect on the amount of pollen removed. These findings suggest that foraging bumblebees may improve pollen collection by increasing the duration or amplitude of their buzzes. Moreover, given that amplitude is positively correlated with mass, preferential foraging by heavier workers is likely to result in the largest pollen yields per bee, and this could have significant consequences for the success of a colony foraging on buzz-pollinated flowers.


Asunto(s)
Abejas/fisiología , Flores , Polen , Polinización , Animales , Microscopía Electrónica de Rastreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA