Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nutrients ; 15(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36771365

RESUMEN

BACKGROUND: The aims of this study were to analyse the effect of creatine supplementation on the performance improvement in a bench pressing (BP) strength test of muscle failure and to evaluate muscle fatigue and metabolic stress 20 min after the exercise. METHODS: Fifty young and healthy individuals were randomly assigned to a creatine group (n = 25) or a placebo group (n = 25). Three exercise sessions were carried out, with one week of rest between them. In the first week, a progressive load BP test was performed until the individuals reached the one repetition maximum (1RM) in order to for us obtain the load-to-velocity ratio of each participant. In the second week, the participants conducted a three-set BP exercise protocol against 70% 1RM, where they performed the maximum number of repetitions (MNR) until muscle failure occurred, with two minutes of rest between the sets. After one week, and following a supplementation period of 7 days, where half of the participants consumed 0.3 g·kg-1·day-1 of creatine monohydrate (CR) and the other half consumed 0.3 g·kg-1·day-1 of placebo (PLA, maltodextrin), the protocol from the second week was repeated. After each set, and up to 20 min after finishing the exercise, the blood lactate concentrations and mean propulsive velocity (MPV) at 1 m·s-1 were measured. RESULTS: The CR group performed a significantly higher number of repetitions in Set 1 (CR = 14.8 repetitions, PLA = 13.6 repetitions, p = 0.006) and Set 2 (CR = 8 repetitions, PLA = 6.7 repetitions, p = 0.006) after supplementation, whereas no significant differences were seen in Set 3 (CR = 5.3 repetitions, PLA = 4.7 repetitions, p = 0.176). However, there was a significant increase in blood lactate at minute 10 (p = 0.003), minute 15 (p = 0.020), and minute 20 (p = 0.015) after the exercise in the post-supplementation period. Similarly, a significant increase was observed in the MPV at 1 m·s-1 in the CR group with respect to the PLA group at 10, 15, and 20 min after the exercise. CONCLUSIONS: Although the creatine supplementation improved the performance in the strength test of muscle failure, the metabolic stress and muscle fatigue values were greater during the 20 min of recovery.


Asunto(s)
Creatina , Entrenamiento de Fuerza , Masculino , Humanos , Creatina/farmacología , Músculo Esquelético , Método Doble Ciego , Ácido Láctico/farmacología , Suplementos Dietéticos , Poliésteres , Fuerza Muscular
2.
Artículo en Inglés | MEDLINE | ID: mdl-36361500

RESUMEN

Throughout history a variety of therapeutic tools have been studied as possible enhancers of sports activities. This study proposes the use of Capacitive-Resistive Electric Transfer (CRET) as a performance booster to paralympic athletes, specifically those belonging to the Spanish Paralympic swimming committee. The study was a randomized, single-blind, and observer-blind, crossover clinical trial. Six athletes were randomly assigned to three groups: one treated with CRET (A); a placebo group (B) and a control group (C). The CRET group attended a twenty-minute session before being subjected to pool trials at distances of 50 and 100 m at maximum performance. Measurements were in two dimensions: time in seconds and the Borg scale for perceived exertion. Comparisons between groups were made with respect to distance and the main variables. In the case of perceived exertion, no significant changes were observed in any of the distances; however, in the case of the time variable, a significant difference was observed between Group A vs. Personal Record at 100 m distance (76.3 ± 6.8 vs. 68.4 ± 3.3). The proposed protocol and level of hyperthermia applied suggest refusal of CRET use for the 100-m distance a few minutes before sports practice. Our analysis suggests the need to modify the presented protocol. ClinicalTrials.gov identifier under NCT number: NCT04336007.


Asunto(s)
Rendimiento Atlético , Hipertermia Inducida , Humanos , Método Simple Ciego , Natación , Atletas
3.
Sci Rep ; 12(1): 9671, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690665

RESUMEN

This study aimed to determine the effects of circulating nitrate plus nitrite (NOx) concentrations on resistance exercise performance, VO2 and biomarkers of muscle damage. Eleven well-trained male CrossFit athletes (29.2 ± 3.7 years, 78.9 ± 5.4 kg, 175.1 ± 6.3 cm) carried out a resistance exercise test after drinking 140 mL of beetroot juice (BJ) or placebo. The test consisted of repeating the same resistance exercise routine twice: wall ball shots plus full back squat with 3-min rest (1st routine) or without rest (2nd routine) between the two exercises. Higher NOx plasma levels were verified after BJ than placebo in the pretest and post-test (p < 0.001). A higher number of repetitions was observed after BJ intake compared to placebo in the full back squat exercise during the first routine (p = 0.004). A significantly reduced VO2 was detected after BJ intake compared to placebo during rest and full back squat execution in the first routine (p < 0.05). Plasma myoglobin concentrations were significantly increased with BJ compared to placebo (p = 0.036). These results showed that plasma NOx levels reduced VO2 after BJ intake during rest time. These reduced VO2 was a key factor for improving full back squat performance during the first routine.


Asunto(s)
Beta vulgaris , Entrenamiento de Fuerza , Atletas , Estudios Cruzados , Suplementos Dietéticos , Método Doble Ciego , Humanos , Masculino , Nitratos , Nitritos , Oxígeno , Consumo de Oxígeno
4.
J Int Soc Sports Nutr ; 15(1): 49, 2018 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-30286760

RESUMEN

BACKGROUND: Beetroot juice (BJ) is classified as a high-level supplement for improving sports performance. There is some controversy over the benefits of BJ supplementation for endurance exercise performance, especially when referring to well-trained athletes. This study examines the effects of acute BJ supplementation on cardioventilatory responses, exercise economy/efficiency, slow component of oxygen uptake, time trial performance, blood lactate, energy consumption, and carbohydrate and fat oxidation. METHODS: Twelve well-trained, male triathletes (aged 21-47 yr) were assigned in a randomized, double-blind, crossover design to receive 70 ml of BJ (6.5 mmol NO3-) or placebo (PL). Three hours after taking the supplement, participants completed an endurance test on a cycle ergometer at a constant work rate (W) corresponding to first ventilatory threshold (VT1) (30 min) and second ventilatory threshold (VT2) time trial (~ 15 min). RESULTS: Maximal oxygen uptake was 54.78 ± 3.13 mL·min- 1·kg- 1, and gross efficiency was > 22% at each load intensity and experimental condition. No significant interaction effect (supplement*intensity) was observed on any of the cardioventilatory variables, efficiency/economy, VT2 time trial, energy expenditure, carbohydrate oxidation and fat oxidation (p > 0.05). CONCLUSION: Our findings do not support an improvement in the variables examined in response to acute BJ supplementation. Probably, higher doses are needed for improving time trial performance in male triathletes during a cycle ergometer test conducted at a load intensity equivalent to the first and second ventilatory threshold.


Asunto(s)
Rendimiento Atlético/fisiología , Beta vulgaris , Suplementos Dietéticos , Jugos de Frutas y Vegetales , Sustancias para Mejorar el Rendimiento/administración & dosificación , Fenómenos Fisiológicos en la Nutrición Deportiva , Adulto , Atletas , Ciclismo/fisiología , Estudios Cruzados , Método Doble Ciego , Metabolismo Energético , Prueba de Esfuerzo , Humanos , Masculino , Persona de Mediana Edad , Consumo de Oxígeno , Resistencia Física , Adulto Joven
5.
J Int Soc Sports Nutr ; 15: 19, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29713250

RESUMEN

BACKGROUND: ß-Alanine (BA) is a non-essential amino acid that has been shown to enhance exercise performance. The purpose of this investigation was to determine if BA supplementation improved the adaptive response to five weeks of a resistance training program. METHODS: Thirty healthy, strength-trained individuals were randomly assigned to the experimental groups placebo (PLA) or BA. Over 5 weeks of strength training, subjects in BA took 6.4 g/day of BA as 8 × 800 mg doses each at least 1.5 h apart. The training program consisted of 3 sessions per week in which three different leg exercises were conducted as a circuit (back squat, barbell step ups and loaded jumping lunges). The program started with 3 sets of 40 s of work per exercise and rest periods between sets of 120 s in the first week. This training volume was then gradually built up to 5 sets of 20 s work/60 s rest in the fifth week. The work load during the program was set by one of the authors according to the individual's perceived effort the previous week. The variables measured were average velocity, peak velocity, average power, peak power, and load in kg in a back squat, incremental load, one-repetition maximum (1RM) test. In addition, during the rest period, jump ability (jump height and power) was assessed on a force platform. To compare data, a general linear model with repeated measures two-way analysis of variance was used. RESULTS: Significantly greater training improvements were observed in the BA group versus PLA group (p = 0.045) in the variables average power at 1RM (BA: 42.65%, 95% CI, 432.33, 522.52 VS. PLA: 21.07%, 95% CI, 384.77, 482.19) and average power at maximum power output (p = 0.037) (BA: 20.17%, 95% CI, 637.82, 751.90 VS. PLA; 10.74%, 95% CI, 628.31, 751.53). The pre- to post training average power gain produced at 1RM in BA could be explained by a greater maximal strength gain, or load lifted at 1RM (p = 0.014) (24 kg, 95% CI, 19.45, 28.41 VS. 16 kg, 95% CI, 10.58, 20.25) and in the number of sets executed (p = 0.025) in the incremental load test (BA: 2.79 sets, 95% CI, 2.08, 3.49 VS. PLA: 1.58 sets, 95% CI, 0.82, 2.34). CONCLUSIONS: ß-Alanine supplementation was effective at increasing power output when lifting loads equivalent to the individual's maximal strength or when working at maximum power output. The improvement observed at 1RM was explained by a greater load lifted, or strength gain, in response to training in the participants who took this supplement.


Asunto(s)
Suplementos Dietéticos , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Entrenamiento de Fuerza , beta-Alanina/administración & dosificación , Adolescente , Adulto , Prueba de Esfuerzo , Humanos , Masculino , Músculo Esquelético/fisiología , Fenómenos Fisiológicos en la Nutrición Deportiva , Adulto Joven
6.
Artículo en Inglés | MEDLINE | ID: mdl-29311764

RESUMEN

Beetroot juice contains high levels of inorganic nitrate (NO3-) and its intake has proved effective at increasing blood nitric oxide (NO) concentrations. Given the effects of NO in promoting vasodilation and blood flow with beneficial impacts on muscle contraction, several studies have detected an ergogenic effect of beetroot juice supplementation on exercise efforts with high oxidative energy metabolism demands. However, only a scarce yet growing number of investigations have sought to assess the effects of this supplement on performance at high-intensity exercise. Here we review the few studies that have addressed this issue. The databases Dialnet, Elsevier, Medline, Pubmed and Web of Science were searched for articles in English, Portuguese and Spanish published from 2010 to March 31 to 2017 using the keywords: beet or beetroot or nitrate or nitrite and supplement or supplementation or nutrition or "sport nutrition" and exercise or sport or "physical activity" or effort or athlete. Nine articles fulfilling the inclusion criteria were identified. Results indicate that beetroot juice given as a single dose or over a few days may improve performance at intermittent, high-intensity efforts with short rest periods. The improvements observed were attributed to faster phosphocreatine resynthesis which could delay its depletion during repetitive exercise efforts. In addition, beetroot juice supplementation could improve muscle power output via a mechanism involving a faster muscle shortening velocity. The findings of some studies also suggested improved indicators of muscular fatigue, though the mechanism involved in this effect remains unclear.


Asunto(s)
Rendimiento Atlético , Beta vulgaris , Suplementos Dietéticos , Jugos de Frutas y Vegetales , Entrenamiento de Intervalos de Alta Intensidad , Metabolismo Energético , Humanos , Nitratos/metabolismo , Nitritos/metabolismo , Fosfocreatina/biosíntesis , Fenómenos Fisiológicos en la Nutrición Deportiva
7.
Nutrients ; 9(12)2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29244746

RESUMEN

Background: Beetroot juice (BJ) is rich in inorganic nitrates and has proved effective at increasing blood nitric oxide (NO) levels. When used as a supplement BJ has shown an ergogenic effect on cardiorespiratory resistance exercise modalities, yet few studies have examined its impact on high intensity efforts. Objective: To assess the effects of BJ intake on anaerobic performance in a Wingate test. Methods: Fifteen trained men (age 21.46 ± 1.72 years, height 1.78 ± 0.07 cm and weight 76.90 ± 8.67 kg) undertook a 30-s maximum intensity test on an inertial cycle ergometer after drinking 70 mL of BJ (5.6 mmol NO3-) or placebo. Results: Despite no impacts of BJ on the mean power recorded during the test, improvements were produced in peak power (6%) (p = 0.034), average power 0-15 s (6.7%) (p = 0.048) and final blood lactate levels (82.6%) (p < 0.001), and there was a trend towards a shorter time taken to attain peak power (-8.4%) (p = 0.055). Conclusions: Supplementation with BJ has an ergonomic effect on maximum power output and on average power during the first 15 s of a 30-s maximum intensity inertial cycle ergometer test.


Asunto(s)
Beta vulgaris , Capacidad Cardiovascular , Ejercicio Físico , Jugos de Frutas y Vegetales , Adulto , Índice de Masa Corporal , Dieta , Método Doble Ciego , Prueba de Esfuerzo , Femenino , Humanos , Ácido Láctico/sangre , Masculino , Nitratos/administración & dosificación , Sustancias para Mejorar el Rendimiento/administración & dosificación , Resistencia Física/efectos de los fármacos , Raíces de Plantas , Adulto Joven
8.
Nutrients ; 9(1)2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-28067808

RESUMEN

Athletes use nutritional supplementation to enhance the effects of training and achieve improvements in their athletic performance. Beetroot juice increases levels of nitric oxide (NO), which serves multiple functions related to increased blood flow, gas exchange, mitochondrial biogenesis and efficiency, and strengthening of muscle contraction. These biomarker improvements indicate that supplementation with beetroot juice could have ergogenic effects on cardiorespiratory endurance that would benefit athletic performance. The aim of this literature review was to determine the effects of beetroot juice supplementation and the combination of beetroot juice with other supplements on cardiorespiratory endurance in athletes. A keyword search of DialNet, MedLine, PubMed, Scopus and Web of Science databases covered publications from 2010 to 2016. After excluding reviews/meta-analyses, animal studies, inaccessible full-text, and studies that did not supplement with beetroot juice and adequately assess cardiorespiratory endurance, 23 articles were selected for analysis. The available results suggest that supplementation with beetroot juice can improve cardiorespiratory endurance in athletes by increasing efficiency, which improves performance at various distances, increases time to exhaustion at submaximal intensities, and may improve the cardiorespiratory performance at anaerobic threshold intensities and maximum oxygen uptake (VO2max). Although the literature shows contradictory data, the findings of other studies lead us to hypothesize that supplementing with beetroot juice could mitigate the ergolytic effects of hypoxia on cardiorespiratory endurance in athletes. It cannot be stated that the combination of beetroot juice with other supplements has a positive or negative effect on cardiorespiratory endurance, but it is possible that the effects of supplementation with beetroot juice can be undermined by interaction with other supplements such as caffeine.


Asunto(s)
Beta vulgaris/química , Capacidad Cardiovascular , Jugos de Frutas y Vegetales , Resistencia Física , Raíces de Plantas/química , Atletas , Bases de Datos Factuales , Humanos , Metaanálisis como Asunto , Consumo de Oxígeno , Sustancias para Mejorar el Rendimiento
9.
Nutr Hosp ; 31(1): 155-69, 2014 Oct 06.
Artículo en Español | MEDLINE | ID: mdl-25561107

RESUMEN

Carnosine, dipeptide formed by amino acids ß-alanine and L-histidine, has important physiological functions among which its antioxidant and related memory and learning. However, in connection with the exercise, the most important functions would be associated with muscle contractility, improving calcium sensitivity in muscle fibers, and the regulatory function of pH. Thus, it is proposed that carnosine is the major intracellular buffer, but could contribute to 7-10% in buffer or buffer capacity. Since carnosine synthesis seems to be limited by the availability of ß-alanine supplementation with this compound has been gaining increasing popularity among the athlete population. Therefore, the objective of this study literature review was to examine all those research works have shown the effect of ß-alanine supplementation on athletic performance. Moreover, it also has attempted to establish a specific dosage that maximizing the potential benefits, minimize paresthesia, the main side effect presented in response to supplementation.


La carnosina, dipéptido formado por los aminoácidos ß-alanina y L-histidina, tiene importantes funciones fisiológicas entre las que destaca su función antioxidante y las relacionadas con la memoria y el aprendizaje. Sin embargo, en relación con el ejercicio, las funciones más importantes serían las relacionadas con la contractilidad muscular, al mejorar la sensibilidad al calcio en las fibras musculares, y la función reguladora del pH. De este modo, se ha propuesto que la carnosina es el principal tampón intracelular, pudiendo llegar a contribuir hasta un 7-10% en la capacidad buffer o tampón. Dado que la síntesis de carnosina parece estar limitada por la disponibilidad de ß-alanina, la suplementación con este compuesto ha ido ganando cada vez más popularidad entre la población deportista. Por ello, el objetivo del presente estudio de revisión bibliográfica ha sido el de estudiar todos aquellos trabajos de investigación que han comprobado el efecto de la suplementación con ß-alanina sobre el rendimiento deportivo. Por otra parte, también, se ha intentado establecer una posología específica que, maximizando los posibles efectos beneficiosos, reduzca al mínimo la parestesia, el principal efecto secundario presentado como respuesta a la suplementación.


Asunto(s)
Rendimiento Atlético , Suplementos Dietéticos , beta-Alanina/farmacología , Carnosina/farmacología , Humanos , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Parestesia/inducido químicamente , beta-Alanina/administración & dosificación , beta-Alanina/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA