Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 74(1): 148-163, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33284502

RESUMEN

BACKGROUND AND AIMS: The liver plays a central role in all metabolic processes in the body. However, precise characterization of liver metabolism is often obscured by its inherent complexity. Phosphorylated metabolites occupy a prominent position in all anabolic and catabolic pathways. Here, we develop a 31 P nuclear magnetic resonance (NMR)-based method to study the liver "phosphorome" through the simultaneous identification and quantification of multiple hydrophilic and hydrophobic phosphorylated metabolites. APPROACH AND RESULTS: We applied this technique to define the metabolic landscape in livers from a mouse model of the rare disease disorder congenital erythropoietic porphyria (CEP) as well as two well-known murine models of nonalcoholic steatohepatitis: one genetic, methionine adenosyltransferase 1A knockout mice, and the other dietary, mice fed a high-fat choline-deficient diet. We report alterations in the concentrations of phosphorylated metabolites that are readouts of the balance between glycolysis, gluconeogenesis, the pentose phosphate pathway, the tricarboxylic acid cycle, and oxidative phosphorylation and of phospholipid metabolism and apoptosis. Moreover, these changes correlate with the main histological features: steatosis, apoptosis, iron deposits, and fibrosis. Strikingly, treatment with the repurposed drug ciclopirox improves the phosphoromic profile of CEP mice, an effect that was mirrored by the normalization of liver histology. CONCLUSIONS: In conclusion, these findings indicate that NMR-based phosphoromics may be used to unravel metabolic phenotypes of liver injury and to identify the mechanism of drug action.


Asunto(s)
Hígado/metabolismo , Metaboloma/fisiología , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Modelos Animales de Enfermedad , Estudios de Factibilidad , Femenino , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Hígado/efectos de los fármacos , Hígado/patología , Espectroscopía de Resonancia Magnética , Masculino , Metaboloma/efectos de los fármacos , Metabolómica/métodos , Ratones , Ratones Transgénicos , Modelos Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Fósforo , Fosforilación/efectos de los fármacos
2.
Mol Pharmacol ; 87(1): 77-86, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25338671

RESUMEN

S-Adenosylmethionine (SAMe), the principal methyl donor that is available as a nutritional supplement, and its metabolite methylthioadenosine (MTA) exert chemopreventive properties against liver and colon cancer in experimental models. Both agents reduced ß-catenin expression on immunohistochemistry in a murine colitis-associated colon cancer model. In this study, we examined the molecular mechanisms involved. SAMe or MTA treatment in the colitis-associated cancer model lowered total ß-catenin protein levels by 47 and 78%, respectively. In an orthotopic liver cancer model, increasing SAMe levels by overexpressing methionine adenosyltransferase 1A also reduced total ß-catenin levels by 68%. In both cases, lower cyclin D1 and c-Myc expression correlated with lower ß-catenin levels. In liver (HepG2) and colon (SW480, HCT116) cancer cells with constitutively active ß-catenin signaling, SAMe and MTA treatment inhibited ß-catenin activity by excluding it from the nuclear compartment. However, in liver (Huh-7) and colon (RKO) cancer cells expressing wild-type Wnt/ß-catenin, SAMe and MTA accelerated ß-catenin degradation by a glycogen synthase kinase 3-ß-dependent mechanism. Both agents lowered protein kinase B activity, but this was not mediated by inhibiting phosphoinositide 3-kinase. Instead, both agents increased the activity of protein phosphatase 2A, which inactivates protein kinase B. The effect of MTA on lowering ß-catenin is direct and not mediated by its conversion to SAMe, as blocking this conversion had no influence. In conclusion, SAMe and MTA inhibit Wnt/ß-catenin signaling in colon and liver cancer cells regardless of whether this pathway is aberrantly induced, making them ideal candidates for chemoprevention and/or chemotherapy in these cancers.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Desoxiadenosinas/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Experimentales/tratamiento farmacológico , S-Adenosilmetionina/farmacología , Tionucleósidos/farmacología , beta Catenina/metabolismo , Animales , Línea Celular Tumoral , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Células Hep G2 , Humanos , Neoplasias Hepáticas/patología , Ratones , Neoplasias Experimentales/patología , Transducción de Señal/efectos de los fármacos
3.
Exp Cell Res ; 319(12): 1902-1911, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23588207

RESUMEN

Methionine adenosyltransferase (MAT) is an essential enzyme that is responsible for the biosynthesis of S-adenosylmethionine (SAMe), the principal methyl donor and precursor of polyamines. MAT1A is expressed in normal liver and MAT2A is expressed in all extrahepatic tissues. MAT2A expression is increased in human colon cancer and in colon cancer cells treated with mitogens, whereas silencing MAT2A resulted in apoptosis. The aim of the current work was to examine the mechanism responsible for MAT2A-dependent growth and apoptosis. We found that in RKO (human adenocarcinoma cell line) cells, MAT2A siRNA treatment lowered cellular SAMe and putrescine levels by 70-75%, increased apoptosis and inhibited growth. Putrescine supplementation blunted significantly MAT2A siRNA-induced apoptosis and growth suppression. Putrescine treatment (100pmol/L) raised MAT2A mRNA level to 4.3-fold of control, increased the expression of c-Jun and c-Fos and binding to an AP-1 site in the human MAT2A promoter and the promoter activity. In human colon cancer specimens, the expression levels of MAT2A, ornithine decarboxylase (ODC), c-Jun and c-Fos are all elevated as compared to adjacent non-tumorous tissues. Overexpression of ODC in RKO cells also raised MAT2A mRNA level and MAT2A promoter activity. ODC and MAT2A are also overexpressed in liver cancer and consistently, similar MAT2A-ODC-putrescine interactions and effects on growth and apoptosis were observed in HepG2 cells. In conclusion, there is a crosstalk between polyamines and MAT2A. Increased MAT2A expression provides more SAMe for polyamines biosynthesis; increased polyamine (putrescine in this case) can activate MAT2A at the transcriptional level. This along with increased ODC expression in cancer all feed forward to further enhance the proliferative capacity of the cancer cell.


Asunto(s)
Neoplasias del Colon/metabolismo , Neoplasias Hepáticas/metabolismo , Metionina Adenosiltransferasa/metabolismo , Putrescina/metabolismo , Anciano , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/enzimología , Femenino , Humanos , Neoplasias Hepáticas/enzimología , Masculino , Metionina Adenosiltransferasa/genética , Persona de Mediana Edad , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , ARN Interferente Pequeño , S-Adenosilmetionina/metabolismo , Factor de Transcripción AP-1/metabolismo , Transcripción Genética
4.
Hepatology ; 50(2): 462-71, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19444874

RESUMEN

UNLABELLED: Hepatocellular carcinoma (HCC) remains a common cancer worldwide that lacks effective chemoprevention or treatment. Chronic liver disease often leads to impaired hepatic S-adenosylmethionine (SAMe) biosynthesis, and mice with SAMe deficiency develop HCC spontaneously. SAMe is antiapoptotic in normal hepatocytes but proapoptotic in cancerous hepatocytes. The present study investigated SAMe's effectiveness in prevention and treatment of HCC. Two weeks after injecting 2.5 million H4IIE cells into the liver parenchyma of ACI rats, they typically form a 1-cm tumor. When SAMe (150 mg/kg/day) was delivered through continuous intravenous infusion, hepatic SAMe levels reached 0.7 mM (over 10-fold) 24 hours later. This regimen, started 1 day after injecting H4IIE cells and continued for 10 days, was able to reduce tumor establishment and growth. However, if intravenous SAMe was started after HCC had already developed, it was ineffective in reducing tumor growth for 24 days. Although plasma SAMe levels remained elevated, hepatic SAMe levels were minimally increased (30% higher). Chronic SAMe administration led to induction of hepatic methyltransferases, which prevented SAMe accumulation. To see if SAMe's preventive effect on tumor establishment involves angiogenesis, the effect of SAMe on angiogenesis genes was studied. SAMe treatment of H4IIE cells altered the expression of several genes with the net effect of inhibiting angiogenesis. These changes were confirmed at the protein level and functionally in human umbilical vein endothelial cells. CONCLUSION: SAMe is effective in preventing HCC establishment but ineffective in treating established HCC because of induction of hepatic methyltransferases, which prevents SAMe level to reach high enough to kill liver cancer cells. SAMe's chemopreventive effect may be related to its proapoptotic action and its ability to inhibit angiogenesis.


Asunto(s)
Carcinoma Hepatocelular/prevención & control , Neoplasias Hepáticas Experimentales/prevención & control , S-Adenosilmetionina/uso terapéutico , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Suplementos Dietéticos , Progresión de la Enfermedad , Humanos , Infusiones Intravenosas , Inyecciones Intraperitoneales , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Masculino , Ratas , Ratas Endogámicas ACI , S-Adenosilmetionina/farmacología
5.
Mol Pharmacol ; 76(1): 192-200, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19372210

RESUMEN

S-Adenosylmethionine (SAMe) and its metabolite 5'-methylthioadenosine (MTA) inhibit mitogen-induced proliferative response in liver and colon cancer cells. SAMe and MTA are also proapoptotic in liver cancer cells by selectively inducing Bcl-x(S) expression. The aims of this work were to assess whether these agents are proapoptotic in colon cancer cells, and if so, to elucidate the molecular mechanisms. We found that both SAMe and MTA are proapoptotic in HT-29 and RKO cells in a dose- and time-dependent manner. Gene microarray uncovered down-regulation of cellular FLICE inhibitory protein (cFLIP). SAMe and MTA treatment led to a decrease in the mRNA and protein levels of both the long and short cFLIP isoforms. This required de novo RNA synthesis and was associated with activation of procaspase-8, Bid cleavage, and release of cytochrome c from the mitochondria. Inhibiting caspase 8 activity or overexpression of cFLIP protected against apoptosis, whereas supplementing with polyamines did not. SAMe and MTA treatment sensitized RKO cells to tumor necrosis factor alpha-related apoptosis-inducing ligand-induced apoptosis. Although SAMe and MTA are proapoptotic in colon cancer cells, they have no toxic effects in NCM460 cells, a normal colon epithelial cell line. In contrast to liver cancer cells, SAMe and MTA had no effect on Bcl-x(S) expression in colon cancer cells. In conclusion, SAMe and MTA are proapoptotic in colon cancer cells but not normal colon epithelial cells. One molecular mechanism identified is the inhibition of cFLIP expression. SAMe and MTA may be attractive agents in the chemoprevention and treatment of colon cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/antagonistas & inhibidores , Desoxiadenosinas/farmacología , S-Adenosilmetionina/farmacología , Tionucleósidos/farmacología , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/fisiología , Caspasa 8/metabolismo , Cicloheximida/farmacología , Citocromos c/metabolismo , Células HT29 , Humanos , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología
6.
Gastroenterology ; 133(1): 207-18, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17631143

RESUMEN

BACKGROUND & AIMS: Two genes (MAT1A and MAT2A) encode for methionine adenosyltransferase, an essential enzyme responsible for S-adenosylmethionine (SAMe) biosynthesis. MAT1A is expressed in liver, whereas MAT2A is widely distributed. In liver, increased MAT2A expression is associated with growth, while SAMe inhibits MAT2A expression and growth. The role of MAT2A in colon cancer in unknown. The aims of this study were to examine whether MAT2A expression and SAMe and its metabolite methylthioadenosine (MTA) can modulate growth of colon cancer cells. METHODS: Studies were conducted using resected colon cancer specimens, polyps from Min mice, and human colon cancer cell lines RKO and HT-29. MAT2A expression was measured by real-time polymerase chain reaction and cell growth by the 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide assay. RESULTS: In 12 of 13 patients and all 9 polyps from Min mice, the MAT2A messenger RNA levels were 200%-340% of levels in adjacent normal tissues, respectively. Epidermal growth factor, insulin-like growth factor 1, and leptin increased growth and up-regulated MAT2A expression and MAT2A promoter activity in RKO and HT-29 cells. SAMe and MTA lowered the baseline expression of MAT2A and blocked the growth factor-mediated increase in MAT2A expression and growth in colon cancer cell lines. Importantly, the mitogenic effect of these growth factors was inhibited if MAT2A induction was prevented by RNA interference. SAMe and MTA supplementation in drinking water increased intestinal SAMe levels and lowered MAT2A expression. CONCLUSIONS: Similar to the liver, up-regulation of MAT2A also provides a growth advantage and SAMe and MTA can block mitogenic signaling in colon cancer cells.


Asunto(s)
Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , S-Adenosilmetionina/metabolismo , Adenosina/análogos & derivados , Anciano , Animales , Muerte Celular , División Celular , Interacciones Farmacológicas , Factor de Crecimiento Epidérmico/farmacología , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HT29 , Humanos , Factor I del Crecimiento Similar a la Insulina/farmacología , Pólipos Intestinales/genética , Pólipos Intestinales/metabolismo , Leptina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Mitógenos/farmacología , Poliaminas/metabolismo , Regiones Promotoras Genéticas/fisiología , S-Adenosilmetionina/farmacología
7.
FASEB J ; 17(1): 56-8, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12424217

RESUMEN

Severe necrotizing pancreatitis occurs in young female mice fed a choline-deficient and ethionine-supplemented (CDE) diet. Although the mechanism of the pancreatitis is unknown, one consequence of this diet is depletion of hepatic S-adenosylmethionine (SAM). SAM formation is catalyzed by methionine adenosyltransferases (MATs), which are encoded by liver-specific (MAT1A) and non-liver-specific (MAT2A) genes. In this work, we examined changes in pancreatic SAM homeostasis in mice receiving the CDE diet and the effect of SAM treatment. We found that both MAT forms are expressed in normal pancreas and pancreatic acini. After 48 h of the CDE diet, SAM levels decreased 50% and MAT1A-encoded protein disappeared via post-translational mechanisms, whereas MAT2A-encoded protein increased via pretranslational mechanisms. CDE-fed mice exhibited extensive necrosis, edema, and acute pancreatic inflammatory infiltration, which were prevented by SAM treatment. However, old female mice consuming the CDE diet that do not develop pancreatitis showed a similar fall in pancreatic SAM level. SAM was also protective in cerulein-induced pancreatitis in the rat, but the protection was limited. Although the pancreatic SAM level fell by more than 80% in the MAT1A knockout mice, no pancreatitis developed. This study thus provides several novel findings. First, the so-called liver-specific MAT1A is highly expressed in the normal pancreas and pancreatic acini. Second, the CDE diet causes dramatic changes in the expression of MAT isozymes by different mechanisms. Third, in contrast to the situation in the liver, where absence of MAT1A and decreased hepatic SAM level can lead to spontaneous tissue injury, in the pancreas the roles of SAM and MAT1A appear more complex and remain to be defined.


Asunto(s)
Pancreatitis/etiología , S-Adenosilmetionina/fisiología , Administración Oral , Animales , Ceruletida , Deficiencia de Colina/complicaciones , Etionina/administración & dosificación , Femenino , Metionina Adenosiltransferasa/metabolismo , Ratones , Modelos Biológicos , Páncreas/enzimología , Páncreas/patología , Pancreatitis/patología , Pancreatitis/prevención & control , S-Adenosilmetionina/administración & dosificación
8.
FASEB J ; 16(1): 15-26, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11772932

RESUMEN

Genome sequence analysis reveals that all organisms synthesize S-adenosylmethionine (AdoMet) and that a large fraction of all genes is AdoMet-dependent methyltransferases. AdoMet-dependent methylation has been shown to be central to many biological processes. Up to 85% of all methylation reactions and as much as 48% of methionine metabolism occur in the liver, which indicates the crucial importance of this organ in the regulation of blood methionine. Of the two mammalian genes (MAT1A, MAT2A) that encode methionine adenosyltransferase (MAT, the enzyme that makes AdoMet), MAT1A is specifically expressed in adult liver. It now appears that growth factors, cytokines, and hormones regulate liver MAT mRNA levels and enzyme activity and that AdoMet should not be viewed only as an intermediate metabolite in methionine catabolism, but also as an intracellular control switch that regulates essential hepatic functions such as regeneration, differentiation, and the sensitivity of this organ to injury. The aim of this review is to integrate these recent findings linking AdoMet with liver growth, differentiation, and injury into a comprehensive model. With the availability of AdoMet as a nutritional supplement and evidence of its beneficial role in various liver diseases, this review offers insight into its mechanism of action.


Asunto(s)
Hígado/fisiología , S-Adenosilmetionina/fisiología , Animales , Diferenciación Celular , División Celular , Modelos Animales de Enfermedad , Humanos , Hepatopatías/etiología , Metionina Adenosiltransferasa/química , Metionina Adenosiltransferasa/metabolismo , Ratones , Modelos Biológicos , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA