Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 358: 120859, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615398

RESUMEN

This study was conducted to investigate the feasibility of microalgal biomass production and nutrient removal from recirculating aquaculture systems (RAS) water (RASW) with low phosphate concentration. For this purpose, Nannochloropsis oculata, Pavlova gyrans, Tetraselmis suecica, Phaeodactylum tricornutum, and their consortium were cultivated in RASW and RASW supplemented with vitamins (+V). Among them, N. oculata showed the maximum biomass production of 0.4 g/L in RASW. Vitamins supplementation significantly increased the growth of T. suecica from 0.16 g/L in RASW to 0.33 g/L in RASW + V. Additionally, T. suecica showed the highest nitrate (NO3-N) removal efficiency of 80.88 ± 2.08 % in RASW and 83.82 ± 2.08 % in RASW + V. Accordingly, T. suecica was selected for scaling up study of microalgal cultivation in RASW and RASW supplemented with nitrate (RASW + N) in 4-L airlift photobioreactors. Nitrate supplementation enhanced the growth of T. suecica up to 2.2-fold (day 15). The fatty acid nutritional indices in T. suecica cultivated in RASW and RASW + N showed optimal polyunsaturated fatty acids (PUFAs)/saturated fatty acid (SFAs), omega-6 fatty acid (n-6)/omega-3 fatty acid (n-3), indices of atherogenicity (IA), and thrombogenicity (IT)). Overall, the findings of this study revealed that despite low phosphate concentration, marine microalgae can grow in RASW and relatively reduce the concentration of nitrate. Furthermore, the microalgal biomass cultivated in RASW consisting of pigments and optimal fatty acid nutritional profile can be used as fish feed, thus contributing to a circular bioeconomy.


Asunto(s)
Acuicultura , Biomasa , Microalgas , Fosfatos , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Fosfatos/metabolismo , Nitratos/metabolismo , Nutrientes/metabolismo
2.
Eng Life Sci ; 22(10): 650-661, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36247830

RESUMEN

The present study reports the mixed culture acidogenic production of biohydrogen and carboxylic acids (CA) from brewery spent grains (BSG) in the presence of high concentrations of cobalt, iron, nickel, and zinc. The metals enhanced biohydrogen output by 2.39 times along with CA biosynthesis by 1.73 times. Cobalt and iron promoted the acetate and butyrate pathways, leading to the accumulation of 5.14 gCOD/L of acetic and 11.36 gCOD/L of butyric acid. The production of solvents (ethanol + butanol) was higher with zinc (4.68 gCOD/L) and cobalt (4.45 gCOD/L). A combination of all four metals further enhanced CA accumulation to 42.98 gCOD/L, thus surpassing the benefits accrued from supplementation with individual metals. Additionally, 0.36 and 0.31 mol green ammonium were obtained from protein-rich brewery spent grain upon supplementation with iron and cobalt, respectively. Metagenomic analysis revealed the high relative abundance of Firmicutes (>90%), of which 85.02% were Clostridium, in mixed metal-containing reactors. Finally, a significant correlation of dehydrogenase activity with CA and biohydrogen evolution was observed upon metal addition.

3.
Sci Rep ; 10(1): 1992, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32029800

RESUMEN

Omega-3 fatty acids, and specifically docosahexaenoic acid (DHA), are important and essential nutrients for human health. Thraustochytrids are recognised as commercial strains for nutraceuticals production, they are group of marine oleaginous microorganisms capable of co-synthesis of DHA and other valuable carotenoids in their cellular compartment. The present study sought to optimize DHA and squalene production by the thraustochytrid Schizochytrium limacinum SR21. The highest biomass yield (0.46 g/gsubstrate) and lipid productivity (0.239 g/gsubstrate) were observed with 60 g/L of glucose, following cultivation in a bioreactor, with the DHA content to be 67.76% w/wtotal lipids. To reduce costs, cheaper feedstocks and simultaneous production of various value-added products for pharmaceutical or energy use should be attempted. To this end, we replaced pure glucose with organosolv-pretreated spruce hydrolysate and assessed the simultaneous production of DHA and squalene from S. limacinum SR21. After the 72 h of cultivation period in bioreactor, the maximum DHA content was observed to 66.72% w/wtotal lipids that was corresponded to 10.15 g/L of DHA concentration. While the highest DHA productivity was 3.38 ± 0.27 g/L/d and squalene reached a total of 933.72 ± 6.53 mg/L (16.34 ± 1.81 mg/gCDW). In summary, we show that the co-production of DHA and squalene makes S. limacinum SR21 appropriate strain for commercial-scale production of nutraceuticals.


Asunto(s)
Reactores Biológicos/microbiología , Ácidos Docosahexaenoicos/biosíntesis , Microbiología Industrial/métodos , Escualeno/metabolismo , Estramenopilos/metabolismo , Biocombustibles/economía , Biomasa , Reactores Biológicos/economía , Análisis Costo-Beneficio , Suplementos Dietéticos , Ácidos Docosahexaenoicos/aislamiento & purificación , Bosques , Microbiología Industrial/economía , Escualeno/aislamiento & purificación , Desarrollo Sostenible
4.
Sci Total Environ ; 711: 135099, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32000342

RESUMEN

The rising demand for surfactants by the pharmaceuticals and cosmetic industries has generated vast amounts of petroleum-based synthetic surfactants, which are often toxic and non-degradable. Owing to their low toxicity, stability in extreme conditions, and biodegradability, biosurfactants could represent a sustainable alternative. The present study aimed to maximize the production of rhamnolipids (RL) from Pseudomonas aeruginosa by optimizing glucose concentration, temperature, and C/N and C/P ratios. After 96 h of cultivation at 37 °C, the final RL concentration was 4.18 ± 0.19 g/L with a final yield of 0.214 ± 0.010 g/gglucose when pure glucose was used as a carbon source. At present, the main obstacle towards commercialization of RL production is economic sustainability, due to the high cost of downstream processes and media components. For this reason, a renewable source such as wood hydrolysates (from birch and spruce woodchips) was examined here as a possible source of glucose for RL production. Both hydrolysates proved to be adequate, resulting in 2.34 ± 0.17 and 2.31 ± 0.10 g/L of RL, respectively, and corresponding yields of 0.081 ± 0.006 and 0.089 ± 0.004 g/gsugar after 96 h. These results demonstrate the potential of using renewable biomass for the production of biosurfactants and, to the best of our knowledge, they constitute the first report on the use of wood hydrolysates for RL production.


Asunto(s)
Pseudomonas aeruginosa , Biomasa , Bosques , Glucolípidos , Petróleo , Tensoactivos
5.
Mar Drugs ; 17(2)2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30781416

RESUMEN

Polyunsaturated fatty acids (PUFAs) are essential for human function, however they have to be provided through the diet. As their production from fish oil is environmentally unsustainable, there is demand for new sources of PUFAs. The aim of the present work was to establish the microalgal platform to produce nutraceutical-value PUFAs from forest biomass. To this end, the growth of Phaeodactylum tricornutum on birch and spruce hydrolysates was compared to autotrophic cultivation and glucose synthetic media. Total lipid generated by P. tricornutum grown mixotrophically on glucose, birch, and spruce hydrolysates was 1.21, 1.26, and 1.29 g/L, respectively. The highest eicosapentaenoic acid (EPA) production (256 mg/L) and productivity (19.69 mg/L/d) were observed on spruce hydrolysates. These values were considerably higher than those obtained from the cultivation without glucose (79.80 mg/L and 6.14 mg/L/d, respectively) and also from the photoautotrophic cultivation (26.86 mg/L and 2.44 mg/L/d, respectively). To the best of our knowledge, this is the first report describing the use of forest biomass as raw material for EPA and docosapentaenoic acid (DHA) production.


Asunto(s)
Betula/química , Biomasa , Suplementos Dietéticos/análisis , Ácidos Grasos Insaturados/biosíntesis , Microalgas/metabolismo , Picea/química , Medios de Cultivo , Ácido Eicosapentaenoico/análisis , Ácido Eicosapentaenoico/biosíntesis , Ácidos Grasos Insaturados/análisis , Glucosa/metabolismo , Madera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA