Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 170(3): 1445-59, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26792122

RESUMEN

Starch is a biologically and commercially important polymer of glucose. Starch is organized into starch grains (SGs) inside amyloplasts. The SG size differs depending on the plant species and is one of the most important factors for industrial applications of starch. There is limited information on genetic factors regulating SG sizes. In this study, we report the rice (Oryza sativa) mutant substandard starch grain6 (ssg6), which develops enlarged SGs in endosperm. Enlarged SGs are observed starting at 3 d after flowering. During endosperm development, a number of smaller SGs appear and coexist with enlarged SGs in the same cells. The ssg6 mutation also affects SG morphologies in pollen. The SSG6 gene was identified by map-based cloning and microarray analysis. SSG6 encodes a protein homologous to aminotransferase. SSG6 differs from other rice homologs in that it has a transmembrane domain. SSG6-green fluorescent protein is localized in the amyloplast membrane surrounding SGs in rice endosperm, pollen, and pericarp. The results of this study suggest that SSG6 is a novel protein that controls SG size. SSG6 will be a useful molecular tool for future starch breeding and applications.


Asunto(s)
Endospermo/metabolismo , Proteínas de la Membrana/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plastidios/metabolismo , Almidón/metabolismo , Transaminasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Endospermo/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/genética , Microscopía Confocal , Microscopía Electrónica de Transmisión , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/genética , Proteínas de Plantas/genética , Plastidios/genética , Plastidios/ultraestructura , Polen/genética , Polen/metabolismo , Homología de Secuencia de Aminoácido , Transaminasas/genética
2.
Plant Cell Physiol ; 56(5): 977-91, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25667114

RESUMEN

Chloroplasts are not generated de novo but proliferate from a pre-existing population of plastids present in meristematic cells. Chloroplast division is executed by the co-ordinated action of at least two molecular machineries: internal machinery located on the stromal side of the inner envelope membrane and external machinery located on the cytosolic side of the outer envelope membrane. To date, molecular studies of chloroplast division in higher plants have been limited to several species such as Arabidopsis. To elucidate chloroplast division in rice, we performed forward genetics and isolated a mutant displaying large chloroplasts among an ethyl methanesulfonate (EMS)-mutagenized Oryza sativa spp japonica Nipponbare population. Using a map-based approach, this mutation, termed giant chloroplast (gic), was allocated in a gene that encodes a protein that is homologous to Paralog of ARC6 (PARC6), which is known to play a role in chloroplast division. GIC is unique in that it has a long C-terminal extension that is not present in other PARC6 homologs. Characterization of gic phenotypes in a rice field showed that gic exhibited defective growth in seed setting, suggesting that the gic mutant negatively affects the reproductive stage. This report is the first describing a chloroplast division mutant in monocotyledons and its effect on plant development.


Asunto(s)
Mutación/genética , Oryza/genética , Proteínas de Plantas/genética , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Clonación Molecular , Fertilidad , Genes de Plantas , Prueba de Complementación Genética , Sitios Genéticos , Pruebas Genéticas , Células del Mesófilo/metabolismo , Células del Mesófilo/ultraestructura , Datos de Secuencia Molecular , Oryza/anatomía & histología , Fenotipo , Fotosíntesis , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Polen/metabolismo , Protoplastos/metabolismo , Carácter Cuantitativo Heredable , Especificidad de la Especie
3.
Plant Physiol ; 164(2): 623-36, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24335509

RESUMEN

Starch is a biologically and commercially important polymer of glucose and is synthesized to form starch grains (SGs) inside amyloplasts. Cereal endosperm accumulates starch to levels that are more than 90% of the total weight, and most of the intracellular space is occupied by SGs. The size of SGs differs depending on the plant species and is one of the most important factors for industrial applications of starch. However, the molecular machinery that regulates the size of SGs is unknown. In this study, we report a novel rice (Oryza sativa) mutant called substandard starch grain4 (ssg4) that develops enlarged SGs in the endosperm. Enlargement of SGs in ssg4 was also observed in other starch-accumulating tissues such as pollen grains, root caps, and young pericarps. The SSG4 gene was identified by map-based cloning. SSG4 encodes a protein that contains 2,135 amino acid residues and an amino-terminal amyloplast-targeted sequence. SSG4 contains a domain of unknown function490 that is conserved from bacteria to higher plants. Domain of unknown function490-containing proteins with lengths greater than 2,000 amino acid residues are predominant in photosynthetic organisms such as cyanobacteria and higher plants but are minor in proteobacteria. The results of this study suggest that SSG4 is a novel protein that influences the size of SGs. SSG4 will be a useful molecular tool for future starch breeding and biotechnology.


Asunto(s)
Endospermo/metabolismo , Oryza/embriología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plastidios/metabolismo , Almidón/metabolismo , Secuencia de Aminoácidos , Cloroplastos/ultraestructura , Segregación Cromosómica , Clonación Molecular , Cruzamientos Genéticos , Endospermo/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Especificidad de Órganos , Oryza/genética , Mapeo Físico de Cromosoma , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Plastidios/genética , Plastidios/ultraestructura , Polen/genética , Fracciones Subcelulares/metabolismo
4.
Plant J ; 70(4): 637-49, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22239102

RESUMEN

Organellar DNAs in mitochondria and plastids are present in multiple copies and make up a substantial proportion of total cellular DNA despite their limited genetic capacity. We recently demonstrated that organellar DNA degradation occurs during pollen maturation, mediated by the Mg(2+) -dependent organelle exonuclease DPD1. To further understand organellar DNA degradation, we characterized a distinct mutant (dpd2). In contrast to the dpd1 mutant, which retains both plastid and mitochondrial DNAs, dpd2 showed specific accumulation of plastid DNAs. Multiple abnormalities in vegetative and reproductive tissues of dpd2 were also detected. DPD2 encodes the large subunit of ribonucleotide reductase, an enzyme that functions at the rate-limiting step of de novo nucleotide biosynthesis. We demonstrated that the defects in ribonucleotide reductase indirectly compromise the activity of DPD1 nuclease in plastids, thus supporting a different regulation of organellar DNA degradation in pollen. Several lines of evidence provided here reinforce our previous conclusion that the DPD1 exonuclease plays a central role in organellar DNA degradation, functioning in DNA salvage rather than maternal inheritance during pollen development.


Asunto(s)
Proteínas de Arabidopsis/genética , ADN de Plantas/genética , Exorribonucleasas/genética , Ribonucleótido Reductasas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN de Plantas/metabolismo , Exorribonucleasas/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Mutación , Fenotipo , Plantas Modificadas Genéticamente , Plastidios/genética , Polen/genética , Polen/ultraestructura , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleótido Reductasas/metabolismo
5.
Plant Cell ; 23(4): 1608-24, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21521697

RESUMEN

In plant cells, mitochondria and plastids contain their own genomes derived from the ancestral bacteria endosymbiont. Despite their limited genetic capacity, these multicopy organelle genomes account for a substantial fraction of total cellular DNA, raising the question of whether organelle DNA quantity is controlled spatially or temporally. In this study, we genetically dissected the organelle DNA decrease in pollen, a phenomenon that appears to be common in most angiosperm species. By staining mature pollen grains with fluorescent DNA dye, we screened Arabidopsis thaliana for mutants in which extrachromosomal DNAs had accumulated. Such a recessive mutant, termed defective in pollen organelle DNA degradation1 (dpd1), showing elevated levels of DNAs in both plastids and mitochondria, was isolated and characterized. DPD1 encodes a protein belonging to the exonuclease family, whose homologs appear to be found in angiosperms. Indeed, DPD1 has Mg²âº-dependent exonuclease activity when expressed as a fusion protein and when assayed in vitro and is highly active in developing pollen. Consistent with the dpd phenotype, DPD1 is dual-targeted to plastids and mitochondria. Therefore, we provide evidence of active organelle DNA degradation in the angiosperm male gametophyte, primarily independent of maternal inheritance; the biological function of organellar DNA degradation in pollen is currently unclear.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , ADN de Plantas/metabolismo , Exonucleasas/metabolismo , Exorribonucleasas/metabolismo , Magnesio/metabolismo , Orgánulos/genética , Polen/crecimiento & desarrollo , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Mapeo Cromosómico , Clonación Molecular , Secuencia Conservada/genética , ADN de Cloroplastos/metabolismo , ADN Mitocondrial/metabolismo , Exorribonucleasas/genética , Genes de Plantas/genética , Prueba de Complementación Genética , Germinación , Patrón de Herencia/genética , Células del Mesófilo/citología , Células del Mesófilo/metabolismo , Mitocondrias/metabolismo , Proteínas Mutantes/aislamiento & purificación , Mutación/genética , Especificidad de Órganos , Fenotipo , Plastidios/metabolismo , Polen/citología , Polen/metabolismo , Polen/ultraestructura , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Reproducción
6.
Plant Cell Physiol ; 50(4): 904-8, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19282372

RESUMEN

Visualizing organelles in living cells is a powerful method to analyze their intrinsic mechanisms. Easy observation of chlorophyll facilitates the study of the underlying mechanisms in chloroplasts, but not in other plastid types. Here, we constructed a transgenic plant enabling visualization of plastids in pollen grains. Combination of a plastid-targeted fluorescent protein with a pollen-specific promoter allowed us to observe the precise number, size and morphology of plastids in pollen grains of the wild type and the ftsZ1 mutant, whose responsible gene plays a central role in chloroplast division. The transgenic material presented in this work is useful for studying the division mechanism of pollen plastids.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Plastidios/ultraestructura , Polen/citología , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Electrónica , Microscopía Fluorescente , Mutagénesis Insercional , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plastidios/genética , Plastidios/metabolismo , Polen/metabolismo
7.
Plant Cell Physiol ; 49(7): 1074-83, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18522988

RESUMEN

Visualization of organelles in living cells is a powerful method for studying their dynamic behavior. Here we attempted to visualize mitochondria in angiosperm male gametophyte (pollen grain from Arabidopsis thaliana) that are composed of one vegetative cell (VC) and two sperm cells (SCs). Combination of mitochondria-targeted fluorescent proteins with VC- or SC-specific expression allowed us to observe the precise number and dynamic behavior of mitochondria in the respective cell types. Furthermore, live imaging of SC mitochondria during double fertilization confirmed previous observations, demonstrated by electron microscopy in other species, that sperm mitochondria enter into the egg and central cells. We also attempted to visualize mutant mitochondria that were elongated due to a defect in mitochondrial division. This mutant phenotype was indeed detectable in VC mitochondria of a heterozygous F(1) plant, suggesting active mitochondrial division in male gametophyte. Finally, we performed mutant screening and isolated a putative mitochondrial protein transport mutant whose phenotype was detectable only in haploid cells. The transgenic materials presented in this work are useful not only for live imaging but also for studying mitochondrial functions by mutant analysis.


Asunto(s)
Arabidopsis/citología , Células Germinativas/citología , Mitocondrias/metabolismo , Polen/citología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cruzamientos Genéticos , Fertilización , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Proteínas Mutantes/aislamiento & purificación , Proteínas Mutantes/metabolismo , Mutación/genética , Plantas Modificadas Genéticamente , Transporte de Proteínas
8.
Plant Cell Physiol ; 49(1): 81-91, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18065422

RESUMEN

The plastid, which originated from the endosymbiosis of a cyanobacterium, contains its own plastid DNA (ptDNA) that exhibits a unique mode of inheritance. Approximately 80% of angiosperms show maternal inheritance, whereas the remainder exhibit biparental inheritance of ptDNA. Here we studied ptDNA inheritance in the model legume, Medicago truncatula. Cytological analysis of mature pollen with DNA-specific fluorescent dyes suggested that M. truncatula is one of the few model plants potentially showing biparental inheritance of ptDNA. We further examined pollen by electron microscopy and revealed that the generative cell (a mother of sperm cells) indeed has many DNA-containing plastids. To confirm biparental inheritance genetically, we crossed two ecotypes (Jemalong A17 and A20), and the transmission mode of ptDNA was investigated by a PCR-assisted polymorphism. Consistent with the cytological observations, the majority of F(1) plants possessed ptDNAs from both parents. Interestingly, cotyledons of F(1) plants tended to retain a biparental ptDNA population, while later emergent leaves tended to be uniparental with either one of the parental plastid genotypes. Biparental transmission was obvious in the F(2) population, in which all plants showed homoplasmy with either a paternal or a maternal plastid genotype. Collectively, these data demonstrated that M. truncatula is biparental for ptDNA transmission and thus can be an excellent model to study plastid genetics in angiosperms.


Asunto(s)
Medicago truncatula/genética , Plastidios/genética , Secuencia de Bases , ADN de Plantas/genética , Genoma de Planta , Datos de Secuencia Molecular , Plastidios/ultraestructura , Polen/genética , Polen/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA