RESUMEN
The efficient application of nitrogenous fertilizers is urgently required, as their excessive and inefficient use is causing substantial economic loss and environmental pollution. A significant amount of applied nitrogen in agricultural soils is lost as nitrous oxide (N2O) in the environment due to the microbial denitrification process. The widely distributed fungus Fusarium oxysporum is a major denitrifier in agricultural soils and its denitrification activity could be targeted to reduce nitrogen loss in the form of N2O from agricultural soils. Here, we report the discovery of first small molecule inhibitors of copper nitrite reductase (NirK) from F. oxysporum, which is a key enzyme in the fungal denitrification process. The inhibitors were discovered by a hierarchical in silico screening approach consisting of pharmacophore modeling and molecular docking. In vitro evaluation of F. oxysporum NirK activity revealed several pyrimidone and triazinone based compounds with potency in the low micromolar range. Some of these compounds suppressed the fungal denitrification in vivo as well. The compounds reported here could be used as starting points for the development of nitrogenous fertilizer supplements and coatings as a means to prevent nitrogen loss by targeting fungal denitrification.
Asunto(s)
Desnitrificación/efectos de los fármacos , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Fusarium/efectos de los fármacos , Fusarium/metabolismo , Nitrito Reductasas/antagonistas & inhibidores , Secuencia de Aminoácidos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Simulación del Acoplamiento Molecular , Nitrito Reductasas/química , Nitrito Reductasas/metabolismo , Conformación Proteica , Homología de Secuencia de AminoácidoRESUMEN
Linking bioactive compounds to their cellular targets is a central challenge in chemical biology. Here we report the mode of action of theonellamides, bicyclic peptides derived from marine sponges. We generated a chemical-genomic profile of theonellamide F using a collection of fission yeast strains in which each open reading frame (ORF) is expressed under the control of an inducible promoter. Clustering analysis of the Gene Ontology (GO) terms associated with the genes that alter drug sensitivity suggested a mechanistic link between theonellamide and 1,3-beta-D-glucan synthesis. Indeed, theonellamide F induced overproduction of 1,3-beta-D-glucan in a Rho1-dependent manner. Subcellular localization and in vitro binding assays using a fluorescent theonellamide derivative revealed that theonellamides specifically bind to 3beta-hydroxysterols, including ergosterol, and cause membrane damage. The biological activity of theonellamides was alleviated in mutants defective in ergosterol biosynthesis. Theonellamides thus represent a new class of sterol-binding molecules that induce membrane damage and activate Rho1-mediated 1,3-beta-D-glucan synthesis.
Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Hidroxiesteroides/metabolismo , Péptidos Cíclicos/farmacología , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Evaluación Preclínica de Medicamentos , Equinocandinas/farmacología , Perfilación de la Expresión Génica , Lipopéptidos/farmacología , Biología Marina , Micafungina , Estructura Molecular , Schizosaccharomyces/citología , Schizosaccharomyces/efectos de los fármacos , Theonella/químicaRESUMEN
As the genomes of many organisms have been sequenced, a variety of global analyses, called 'omics,' have been initiated. Cloning of the set of all open reading frames encoded by the genome (ORFeome) of an organism is a major challenge, which serves as an indispensable provision before one launches into the ocean of the postgenomic world. A suitable strategy for high-throughput cloning and expression of thousands of genes is crucial to success. Recently developed systems employing site-specific or homologous recombination have made it feasible to manipulate thousands of ORFs en masse. Using these technologies, several recent studies have successfully fished biologically active small molecules and target proteins out of this bountiful ocean.
Asunto(s)
Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Biblioteca Genómica , Sistemas de Lectura Abierta , Proteómica , Proteínas/genética , Proteínas/metabolismoRESUMEN
It is becoming increasingly clear that reversible acetylation of proteins is a signal directly controlling the activity of key cellular regulators. The enzymes controlling protein acetylation were identified as histone acetyltransferases (HATs) and histone deacetylases (HDACs). Following the discovery of HATs and HDACs, a number of non-histone proteins have been identified as substrates for these enzymes. HDACs play important roles in transcriptional regulation and pathogenesis of cancer through removing acetyl groups from histones and other transcriptional regulators. HDAC inhibitors case cell cycle arrest, differentiation and/or apoptosis of many tumors, suggesting their usefulness for chemotherapy and differentiation therapy. Since recent studies have revealed that HDACs are structurally and functionally diverse, it should be possible to develop inhibitors specific to individual HDACs as more promising agents for cancer therapy.