Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36768627

RESUMEN

This study was undertaken to evaluate the effect of the BCO2 genotype and dietary supplementation with marigold flower extract on the expression of BCO1, BCO2, LRAT, and TTPA genes in the adipose tissue and brain of rabbits. The concentrations of lutein, zeaxanthin, ß-carotene, retinol, and α-tocopherol were determined in samples collected from rabbits. Sixty young male Termond White rabbits were allocated to three groups based on their genotype at codon 248 of the BCO2 gene (ins/ins, ins/del, and del/del). Each group comprised two subgroups; one subgroup was administered a standard diet, whereas the diet offered to the other subgroup was supplemented with 6 g/kg of marigold flower extract. The study demonstrated that the BCO2 genotype may influence the expression levels of the BCO2, LRAT, and TTPA genes in adipose tissue, and TTPA and BCO1 genes in the brain. Moreover, an increase in the amount of lutein in the diet of BCO2 del/del rabbits may increase the expression of BCO1, LRAT, and TTPA genes in adipose tissue, and the expression of the BCO2 gene in the brain. Another finding of the study is that the content of carotenoids and α-tocopherol increases in both the adipose tissue and brain of BCO2 del/del rabbits.


Asunto(s)
Dioxigenasas , Luteína , Masculino , Animales , Conejos , Activador de Tejido Plasminógeno/metabolismo , beta-Caroteno 15,15'-Monooxigenasa/genética , Dioxigenasas/genética , alfa-Tocoferol/metabolismo , Genotipo , Dieta , Encéfalo/metabolismo , Tejido Adiposo/metabolismo
2.
Int J Mol Sci ; 23(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36142463

RESUMEN

This study investigated the effect of the BCO2 genotype and the addition of Aztec marigold flower extract to rabbit diets on the expression of BCO1, BCO2, LRAT, and TTPA genes in the liver. The levels of lutein, zeaxanthin, ß-carotene, retinol, and α-tocopherol in the liver and blood serum of rabbits, as well as plasma biochemical parameters and serum antioxidant enzyme activities were also determined. Sixty male Termond White growing rabbits were divided into three groups based on their genotype at codon 248 of the BCO2 gene (ins/ins, ins/del and del/del); each group was divided into two subgroups: one subgroup received a standard diet, and the other subgroup was fed a diet supplemented with 6 g/kg of marigold flower extract. The obtained results indicate that the BCO2 genotype may affect the expression levels of BCO1 and BCO2 genes in rabbits. Moreover, the addition of marigold extract to the diet of BCO2 del/del rabbits may increase the expression level of the BCO2 gene. Finally, an increase in the amount of lutein in the diet of rabbits with the BCO2 del/del genotype contributes to its increased accumulation in the liver and blood of animals without compromising their health status or liver function.


Asunto(s)
Vitamina A , beta Caroteno , Animales , Antioxidantes , Carotenoides/metabolismo , Dieta , Flores/genética , Flores/metabolismo , Genotipo , Luteína , Masculino , Conejos , Activador de Tejido Plasminógeno , Zeaxantinas , alfa-Tocoferol , beta Caroteno/metabolismo
3.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36613680

RESUMEN

Here, we demonstrated the potential of Cannabis-derived cannabidiol (CBD) and nanosized selenium (nano-Se) for the modulation of microvascularization and muscle fiber lesions in superficial breast muscle in C. perfringens-challenged chickens. The administration of CBD resulted in a decreased number of atrophic fibers (3.13 vs. 1.13/1.5 mm2) compared with the control, whereas nano-Se or both substances resulted in a decreased split fiber number (4.13 vs. 1.55/1.5 mm2) and in a lower number of necrotic myofibers (2.38 vs. 0.69/1.5 mm2) in breast muscle than the positive control. There was a significantly higher number of capillary vessels in chickens in the CBD+Nano-Se group than in the control and positive control groups (1.31 vs. 0.97 and 0.98, respectively). Feeding birds experimental diets lowered the activity of DNA damage repair enzymes, including 3,N4-ethenodeoxycytosine (by 39.6%), 1,N6-ethenodeoxyadenosine (by 37.5%), 8-oxo-guanine (by 36.2%), formamidopyrimidine (fapy)-DNA glycosylase (by 56.2%) and human alkyl adenine DNA glycosylase (by 40.2%) in the ileal mucosa, but it did not compromise the blood mitochondrial oxygen consumption rate (-2.67 OD/min on average). These findings indicate a potential link between gut mucosa condition and histopathological changes in superficial pectoral muscle under induced inflammation and show the ameliorative effect of CBD and nano-Se in this cross-talk due to their protection from mucosal DNA damage.


Asunto(s)
Cannabidiol , Infecciones por Clostridium , Enteritis , Enfermedades de las Aves de Corral , Selenio , Humanos , Animales , Pollos , Selenio/farmacología , Cannabidiol/farmacología , Infecciones por Clostridium/prevención & control , Músculos Pectorales/patología , Enteritis/patología , Clostridium perfringens , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/prevención & control
4.
Animals (Basel) ; 11(2)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557433

RESUMEN

It was postulated that a phytobiotic preparation containing cinnamon oil and citric acid added to drinking water for chickens in a suitable amount and for a suitable time would beneficially modify the microbiota composition and morphology of the small intestine, thereby improving immunity and growth performance without inducing metabolic disorders. The aim of the study was to establish the dosage and time of administration of such a phytobiotic that would have the most beneficial effect on the intestinal histology and microbiota, production results, and immune and metabolic status of broiler chickens. The experiment was carried out on 980 one-day-old male chickens until the age of 42 days. The chickens were assigned to seven experimental groups of 140 birds each (seven replications of 20 individuals each). The control group (G-C) did not receive the phytobiotic. Groups CT-0.05, CT-0.1, and CT-0.25 received the phytobiotic in their drinking water in the amount of 0.05, 0.1, and 0.2 mL/L, respectively, at days 1-42 of life (continuous application, CT). The birds in groups PT-0.05, PT-0.5, and PT-0.25 received the phytobiotic in the same amounts, but only at days 1-7, 15-21, and 29-35 of life (periodic application, PT). Selected antioxidant and biochemical parameters were determined in the blood of the chickens, as well as parameters of immune status and redox status. The morphology of the intestinal epithelium, composition of the microbiome, and production parameters of chickens receiving the phytobiotic in their drinking water were determined as well. The addition of a phytobiotic containing cinnamon oil and citric acid to the drinking water of broiler chickens at a suitable dosage and for a suitable time can beneficially modify the microbiome composition and morphometry of the small intestine (total number of fungi p < 0.001, total number of aerobic bacteria p < 0.001; and total number of coliform bacteria p < 0.001 was decreased) improving the immunity and growth performance of the chickens (there occurred a villi lengthening p = 0.002 and crypts deepening p = 0.003). Among the three tested dosages (0.05, 0.1, and 0.25 mL/L of water) of the preparation containing cinnamon oil, the dosage of 0.25 mL/L of water administered for 42 days proved to be most beneficial. Chickens receiving the phytobiotic in the amount of 0.25 mL/L had better growth performance, which was linked to the beneficial effect of the preparation on the microbiome of the small intestine, metabolism (the HDL level p = 0.017 was increased; and a decreased level of total cholesterol (TC) p = 0.018 and nonesterified fatty acids (NEFA) p = 0.007, LDL p = 0.041, as well as triacylglycerols (TAG) p = 0.014), and immune (the level of lysozyme p = 0.041 was increased, as well as the percentage of phagocytic cells p = 0.034, phagocytosis index p = 0.038, and Ig-A level p = 0.031) and antioxidant system (the level of LOOH p < 0.001, MDA p = 0.002, and the activity of Catalase (CAT) p < 0.001 were decreased, but the level of ferric reducing ability of plasma (FRAP) p = 0.029, glutathione p = 0.045 and vitamin C p = 0.021 were increased).

5.
Eur J Nutr ; 53(8): 1603-13, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24500372

RESUMEN

PURPOSE: The consumption of a high level of dietary extract from blackcurrant pomace rich in polyphenols was hypothesised to exert beneficial effects on the serum lipid profile, the markers of insulin resistance and the antioxidant status of the host without negative changes in the intestinal tract. METHODS: This hypothesis was tested on 20 male New Zealand white rabbits randomly assigned to four groups of five individuals each. For 4 weeks, the animals were subjected to the following dietary treatments: two control groups were fed a standard or a high-fat diet (7 and 32% energy from fat, respectively), and two experimental groups were fed a standard or a high-fat diet with the addition of 1.5% blackcurrant polyphenolic extract. The extract obtained from blackcurrant fruit pomaces was characterised by high concentrations of anthocyanins and flavonols (48.9 and 17.9%, respectively). RESULTS: The high-fat feeding regimen led to a series of unfavourable changes, such as increased body weight, disturbance of fermentative processes in the hindgut as well the induction of oxidative stress, hyperlipidaemia and insulin resistance. Dietary supplementation with blackcurrant extract decreased the concentration of putrefactive metabolites (ammonia and putrefactive SCFA) and ß-glucuronidase activity in the hindgut digesta. Additionally, the extract ameliorated hyperlipidaemia by decreasing triglyceride, total cholesterol, non-HDL cholesterol and free fatty acid concentrations in the serum and increased the antioxidant capacity of the serum. CONCLUSION: This study suggests that a polyphenol-rich extract from blackcurrant pomace ingested at relatively high amounts may be a useful therapeutic option in the reversal of dysfunctions related to obesity and its complications.


Asunto(s)
Intestinos/efectos de los fármacos , Extractos Vegetales/farmacología , Polifenoles/farmacología , Ribes/química , Animales , Antocianinas/farmacología , Antioxidantes/farmacología , Colesterol/sangre , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Ácidos Grasos no Esterificados/sangre , Frutas/química , Glucuronidasa/metabolismo , Hiperlipidemias/tratamiento farmacológico , Resistencia a la Insulina , Mucosa Intestinal/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Conejos , Triglicéridos/sangre , Aumento de Peso/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA