Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nucl Med ; 65(1): 16-21, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37884332

RESUMEN

Contrast-enhanced MRI is the method of choice for brain tumor diagnostics, despite its low specificity for tumor tissue. This study compared the contribution of MR spectroscopic imaging (MRSI) and amino acid PET to improve the detection of tumor tissue. Methods: In 30 untreated patients with suspected glioma, O-(2-[18F]fluoroethyl)-l-tyrosine (18F-FET) PET; 3-T MRSI with a short echo time; and fluid-attenuated inversion recovery, T2-weighted, and contrast-enhanced T1-weighted MRI were performed for stereotactic biopsy planning. Serial samples were taken along the needle trajectory, and their masks were projected to the preoperative imaging data. Each sample was individually evaluated neuropathologically. 18F-FET uptake and the MRSI signals choline (Cho), N-acetyl-aspartate (NAA), creatine, myoinositol, and derived ratios were evaluated for each sample and classified using logistic regression. The diagnostic accuracy was evaluated by receiver operating characteristic analysis. Results: On the basis of the neuropathologic evaluation of tissue from 88 stereotactic biopsies, supplemented with 18F-FET PET and MRSI metrics from 20 areas on the healthy-appearing contralateral hemisphere to balance the glioma/nonglioma groups, 18F-FET PET identified glioma with the highest accuracy (area under the receiver operating characteristic curve, 0.89; 95% CI, 0.81-0.93; threshold, 1.4 × background uptake). Among the MR spectroscopic metabolites, Cho/NAA normalized to normal brain tissue showed the highest diagnostic accuracy (area under the receiver operating characteristic curve, 0.81; 95% CI, 0.71-0.88; threshold, 2.2). The combination of 18F-FET PET and normalized Cho/NAA did not improve the diagnostic performance. Conclusion: MRI-based delineation of gliomas should preferably be supplemented by 18F-FET PET.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Imagen por Resonancia Magnética/métodos , Glioma/diagnóstico por imagen , Glioma/metabolismo , Espectroscopía de Resonancia Magnética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Tomografía de Emisión de Positrones/métodos , Tirosina , Biopsia
2.
NMR Biomed ; 31(4): e3898, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29436038

RESUMEN

To date, single voxel spectroscopy (SVS) is the most commonly used MRS technique. SVS is relatively easy to use and provides automated and immediate access to the resulting spectra. However, it is also limited in spatial coverage. A new and very promising MRS technique allows for whole-brain MR spectroscopic imaging (WB-MRSI) with much improved spatial resolution. Establishing the reproducibility of data obtained using SVS and WB-MRSI is an important first step for using these techniques to evaluate longitudinal changes in metabolite concentration. The purpose of this study was to assess and directly compare the reproducibility of metabolite quantification at 3T using SVS and WB-MRSI in 'hand-knob' areas of motor cortices and hippocampi in healthy volunteers. Ten healthy adults were scanned using both SVS and WB-MRSI on three occasions one week apart. N-acetyl aspartate (NAA), creatine (Cr), choline (Cho) and myo-inositol (mI) were quantified using SVS and WB-MRSI with reference to both Cr and H2 O. The reproducibility of each technique was evaluated using the coefficient of variation (CV), and the correspondence between the two techniques was assessed using Pearson correlation analysis. The measured mean (range) intra-subject CVs for SVS were 5.90 (2.65-10.66)% for metabolites (i.e. NAA, Cho, mI) relative to Cr, and 8.46 (4.21-21.07)% for metabolites (NAA, Cr, Cho, mI) relative to H2 O. The mean (range) CVs for WB-MRSI were 7.56 (2.78-11.41)% for metabolites relative to Cr, and 7.79 (4.57-14.11)% for metabolites relative to H2 O. Significant positive correlations were observed between metabolites quantified using SVS and WB-MRSI techniques when the Cr but not H2 O reference was used. The results demonstrate that reproducibilities of SVS and WB-MRSI are similar for quantifying the four major metabolites (NAA, Cr, Cho, mI); both SVS and WB-MRSI exhibited good reproducibility. Our findings add reference information for choosing the appropriate 1 H-MRS technique in future studies.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Adulto , Encéfalo/metabolismo , Creatina/metabolismo , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Masculino , Metaboloma , Persona de Mediana Edad , Corteza Motora/diagnóstico por imagen , Reproducibilidad de los Resultados , Adulto Joven
3.
NMR Biomed ; 24(10): 1270-6, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21404355

RESUMEN

Previous studies have evaluated motor and extramotor cerebral cortical regions in patients with amyotrophic lateral sclerosis (ALS) using (1) H MRS, but none have evaluated the thalamus or basal ganglia. The objective of this exploratory study was to evaluate the subclinical involvement of the basal ganglia and thalamus in patients with ALS using (1) H MRS. Fourteen patients (52±7 years) with sporadic definite ALS and 17 age-matched controls were studied using volumetric MRSI on a 3-T scanner. The concentration of the metabolites N-acetylaspartate (NAA), choline (Cho) and their ratio (NAA/Cho) were obtained bilaterally from the basal ganglia (lentiform nucleus, caudate) and thalamus. The maximum rates of finger and foot tap and lip and tongue movements were obtained to assess extrapyramidal and pyramidal tract function. In patients with ALS, relative to controls, the NAA concentration was significantly lower (p<0.02) in the basal ganglia and thalamus, and the Cho concentration was higher (p<0.01) in these structures, except in the caudate (p=0.04). Correspondingly, the NAA/Cho ratio was significantly lower (p<0.01) in these structures, except in the caudate (p=0.03), in patients than in controls. There were mild to strong correlations (r=0.4-0.7) between the metabolites of the basal ganglia and finger tap, foot tap and lip and tongue movement rates. In conclusion, decreased NAA in the basal ganglia and thalamus and increased Cho and decreased NAA/Cho in the lentiform nucleus and thalamus are indicative of neuronal loss or dysfunction and alterations in choline-containing membranes in these structures.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Ganglios Basales/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Tálamo/metabolismo , Adulto , Ganglios Basales/patología , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tálamo/patología
4.
J Neurotrauma ; 27(3): 483-96, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20201668

RESUMEN

Changes in the distribution of the magnetic resonance (MR)-observable brain metabolites N-acetyl aspartate (NAA), total choline (Cho), and total creatine (Cre), following mild-to-moderate closed-head traumatic brain injury (mTBI) were evaluated using volumetric proton MR spectroscopic imaging (MRSI). Studies were carried out during the subacute time period following injury, and associations of metabolite indices with neuropsychological test (NPT) results were evaluated. Twenty-nine subjects with mTBI and Glasgow Coma Scale (GCS) scores of 10-15 were included. Differences in individual metabolite and metabolite ratio distributions relative to those of age-matched control subjects were evaluated, as well as analyses by hemispheric lobes and tissue types. Primary findings included a widespread decrease of NAA and NAA/Cre, and increases of Cho and Cho/NAA, within all lobes of the TBI subject group, and with the largest differences seen in white matter. Examination of the association between all of the metabolite measures and the NPT scores found the strongest negative correlations to occur in the frontal lobe and for Cho/NAA. No significant correlations were found between any of the MRSI or NPT measures and the GCS. These results demonstrate that significant and widespread alterations of brain metabolites occur as a result of mild-to-moderate TBI, and that these measures correlate with measures of cognitive performance.


Asunto(s)
Lesiones Encefálicas/metabolismo , Encéfalo/metabolismo , Trastornos del Conocimiento/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Adolescente , Adulto , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análisis , Ácido Aspártico/metabolismo , Biomarcadores/análisis , Biomarcadores/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Lesiones Encefálicas/patología , Lesiones Encefálicas/fisiopatología , Colina/análisis , Colina/metabolismo , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/fisiopatología , Creatina/análisis , Creatina/metabolismo , Lesión Axonal Difusa/metabolismo , Lesión Axonal Difusa/patología , Lesión Axonal Difusa/fisiopatología , Evaluación de la Discapacidad , Femenino , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Lóbulo Frontal/fisiopatología , Escala de Coma de Glasgow , Humanos , Masculino , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Mielínicas/patología , Pruebas Neuropsicológicas , Degeneración Walleriana/metabolismo , Degeneración Walleriana/patología , Degeneración Walleriana/fisiopatología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA