Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurogastroenterol Motil ; 35(11): e14673, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37831752

RESUMEN

BACKGROUND: 5-hydroxytryptamine 4 receptors (5-HT4 Rs) are expressed in the colonic epithelium, and previous studies have demonstrated that luminal administration of agonists enhances motility, suppresses nociception, and is protective in models of inflammation. We investigated whether stimulation with a luminally acting 5-HT4 R agonist is comparable to previously tested absorbable compounds. METHODS: The dextran sodium sulfate (DSS), trinitrobenzene sulfonic acid (TNBS), and interleukin 10 knockout (IL-10KO) models of colitis were used to test the protective effects of the luminally acting 5-HT4 R agonist, 5HT4-LA1, in the absence and presence of a 5-HT4 R antagonist. The compounds were delivered by enema to mice either before (prevention) or after (recovery) the onset of active colitis. Outcome measure included disease activity index (DAI) and histological evaluation of colon tissue, and effects on wound healing and fecal water content were also assessed. KEY RESULTS: Daily enema of 5HT4-LA1 attenuated the development of, and accelerated recovery from, active colitis. Enema administration of 5HT4-LA1 did not attenuate the development of colitis in 5-HT4 R knockout mice. Stimulation of 5-HT4 Rs with 5HT4-LA1 increased Caco-2 cell migration (accelerated wound healing). Daily administration of 5HT4-LA1 did not increase fecal water content in active colitis. CONCLUSIONS AND INFERENCES: Luminally restricted 5-HT4 R agonists are comparable to absorbable compounds in attenuating and accelerating recovery from active colitis. Luminally acting 5-HT4 R agonists may be useful as an adjuvant to current inflammatory bowel disease (IBD) treatments to enhance epithelial healing.


Asunto(s)
Colitis , Serotonina , Humanos , Ratones , Animales , Células CACO-2 , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Ratones Noqueados , Agua
2.
Gastroenterology ; 151(5): 933-944.e3, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27480173

RESUMEN

BACKGROUND & AIMS: The 5-hydroxytryptamine receptor 4 (5-HT4R or HTR4) is expressed in the colonic epithelium but little is known about its functions there. We examined whether activation of colonic epithelial 5-HT4R protects colons of mice from inflammation. METHODS: The 5-HT4R agonist tegaserod (1 mg/kg), the 5-HT4R antagonist GR113808 (1 mg/kg), or vehicle (control) were delivered by enema to wild-type or 5-HT4R knockout mice at the onset of, or during, active colitis, induced by administration of dextran sodium sulfate or trinitrobenzene sulfonic acid. Inflammation was measured using the colitis disease activity index and by histologic analysis of intestinal tissues. Epithelial proliferation, wound healing, and resistance to oxidative stress-induced apoptosis were assessed, as was colonic motility. RESULTS: Rectal administration of tegaserod reduced the severity of colitis compared with mice given vehicle, and accelerated recovery from active colitis. Rectal tegaserod did not improve colitis in 5-HT4R knockout mice, and intraperitoneally administered tegaserod did not protect wild-type mice from colitis. Tegaserod increased proliferation of crypt epithelial cells. Stimulation of 5-HT4R increased Caco-2 cell migration and reduced oxidative stress-induced apoptosis; these actions were blocked by co-administration of the 5-HT4R antagonist GR113808. In noninflamed colons of wild-type mice not receiving tegaserod, inhibition of 5-HT4Rs resulted in signs of colitis within 3 days. In these mice, epithelial proliferation decreased and bacterial translocation to the liver and spleen was detected. Daily administration of tegaserod increased motility in inflamed colons of guinea pigs and mice, whereas administration of GR113808 disrupted motility in animals without colitis. CONCLUSIONS: 5-HT4R activation maintains motility in healthy colons of mice and guinea pigs, and reduces inflammation in colons of mice with colitis. Agonists might be developed as treatments for patients with inflammatory bowel diseases.


Asunto(s)
Colitis/metabolismo , Colon/metabolismo , Mucosa Intestinal/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Agonistas del Receptor de Serotonina 5-HT4/farmacología , Antagonistas del Receptor de Serotonina 5-HT4/farmacología , Administración Rectal , Animales , Colitis/inducido químicamente , Colitis/patología , Colitis/prevención & control , Colon/efectos de los fármacos , Colon/patología , Sulfato de Dextran , Femenino , Cobayas , Indoles/farmacología , Indoles/uso terapéutico , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Noqueados , Agonistas del Receptor de Serotonina 5-HT4/uso terapéutico , Índice de Severidad de la Enfermedad , Sulfonamidas/farmacología , Ácido Trinitrobencenosulfónico
3.
J Smooth Muscle Res ; 50: 48-65, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26081368

RESUMEN

Garcinia buchananii Baker stem bark extract (GBB) is a traditional medication of diarrhea and dysentery in sub-Saharan Africa. It is believed that GBB causes gastrointestinal smooth muscle relaxation. The aim of this study was to determine whether GBB has spasmolytic actions and identify compounds underlying these actions. Calcium (Ca(2+)) imaging was used to analyze the effect of GBB on Ca(2+) flashes and Ca(2+) waves in guinea pig gallbladder and distal colon smooth muscle. Intracellular microelectrode recording was used to determine the effect of GBB, six fractions of GBB, M1-5 and M7, and (2R,3S,2'' R,3''R)-manniflavanone, a compound isolated from M3 on action potentials in gallbladder smooth muscle. The technique was also used to analyze the effect of GBB, M3, and (2R,3S,2'' R,3''R)-manniflavanone on action potentials in the circular muscle of mouse and guinea pig distal colons, and the effect of GBB and (2R,3S,2''R,3'' R)-manniflavanone on slow waves in porcine ileum. GBB inhibited Ca(2+) flashes and Ca(2+) waves. GBB, M3 and (2R,3 S,2''R,3''R)-manniflavanone inhibited action potentials. L-type Ca(2+) channel activator Bay K 8644 increased the discharge of action potentials in mouse colon but did not trigger or increase action potentials in the presence of GBB and (2R,3S,2''R,3'' R)-manniflavanone. GBB and (2R,3S,2'' R,3''R)-manniflavanone inhibited action potentials in the presence of Bay K 8644. GBB and (2R,3 S,2''R,3''R)-manniflavanone reduced the amplitude but did not alter the frequency of slow waves in the porcine ileum. In conclusion, GBB and (2R,3S,2'' R,3''R)-manniflavanone relax smooth muscle by inhibiting L-type Ca(2+) channels, thus have potential for use as therapies of gastrointestinal smooth muscle spasms, and arrhythmias.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Garcinia/química , Tracto Gastrointestinal/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Parasimpatolíticos/farmacología , Extractos Vegetales/farmacología , Potenciales de Acción , Animales , Cromatografía Liquida , Cobayas , Técnicas In Vitro , Ratones , Corteza de la Planta/química , Porcinos
4.
J Surg Res ; 164(1): 84-90, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19631346

RESUMEN

BACKGROUND: The purpose of this study is to examine the use of daikenchuto (DKT), a traditional Japanese medicine, as a potential treatment for opiate-induced slowing of intestinal transit in an isolated guinea pig colon model of motility. METHODS: Isolated segments of distal guinea pig colon were mounted in a perfusion chamber and imaged with a digital video camera interfaced with a computer. Fecal pellets were inserted into the oral end of the colonic segment and the rates of propulsive motility over a 3 to 4 cm segment of colon were determined in the presence and absence of test compounds. In addition, intracellular recordings were obtained from intact circular muscle, and the responsiveness of inhibitory and excitatory junction potentials to DKT was evaluated. RESULTS: The addition of D-Ala2, N-Me-Phe4, Gly-ol5 (DAMGO), a selective µ-receptor agonist, caused a concentration dependent decrease in colon motility. Naloxone did not affect basal activity, but partially restored motility in the DAMGO treated preparations. DKT (1 × 10(-4)-3 × 10(-4)g/mL) also reversed the inhibitory effect of DAMGO treated colon in a concentration dependent manner. At higher concentrations (1 × 10(-3)-3 × 10(-3)g/mL), however, this effect was lost. Motility slowed even further when naloxone and DKT were combined with noticeable disruptions in spatiotemporal patterns. Interestingly, when added alone, DKT resulted in reverse peristalsis of the pellet. In electrophysiologic studies DKT inhibited both excitatory and inhibitory junction potentials. CONCLUSIONS: DKT appears to be as effective as naloxone in restoring motility in DAMGO treated colon. These two agents, however, do not appear to have an additive effect. When used on untreated colon segments, DKT appears to cause disruptions in the intrinsic reflex circuit of the gut resulting in a disruption of neuromuscular communication.


Asunto(s)
Colon/efectos de los fármacos , Colon/fisiología , Motilidad Gastrointestinal/efectos de los fármacos , Motilidad Gastrointestinal/fisiología , Extractos Vegetales/farmacología , Analgésicos Opioides/farmacología , Animales , Interacciones Farmacológicas , Electrofisiología , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Femenino , Cobayas , Masculino , Medicina Kampo , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Panax , Zanthoxylum , Zingiberaceae
5.
Curr Gastroenterol Rep ; 5(2): 154-9, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12631457

RESUMEN

Our understanding of biliary motility under normal and pathophysiologic conditions is still incomplete, but there have been recent advances. Of particular interest are the mechanisms involved in gallbladder filling and emptying, with a focus on understanding the processes underlying impaired gallbladder emptying leading to gallbladder dyskinesia and the formation of gallstones or cholecystitis. The sphincter of Oddi (SO) is a complex neuromuscular structure. Recent studies have attempted to unravel the specific neural or hormonal mechanisms operating under normal physiologic conditions and those that may lead to SO dysfunction. Furthermore, new research fronts are emerging, including the role of leptin in obese patients with impaired biliary motility and the action of electroacupuncture for possible treatment of SO dysfunction. This review illustrates the broad front of current research regarding the effects of bioactive agents on biliary motility, including enteric hormones, nitric oxide, opioids, inflammatory mediators, leptin, protease inhibitors, neurotransmitters, and electroacupuncture.


Asunto(s)
Sistema Biliar/fisiopatología , Vesícula Biliar/fisiopatología , Animales , Electroacupuntura , Gabexato/farmacología , Vaciamiento Vesicular/fisiología , Histamina/fisiología , Humanos , Inmunohistoquímica , Mediadores de Inflamación/fisiología , Leptina/fisiología , Neurotransmisores/fisiología , Pancreatitis/fisiopatología , Inhibidores de Serina Proteinasa/farmacología , Sincalida/fisiología , Somatostatina/fisiología , Esfínter de la Ampolla Hepatopancreática/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA