Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurophysiol ; 127(4): 840-855, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35264005

RESUMEN

When intense sound is presented during light muscle contraction, inhibition of the corticomotoneuronal pathway is observed. During action preparation, this effect is reversed, with sound resulting in excitation of the corticomotoneuronal pathway. We investigated how the combined maintenance of a muscle contraction during preparation for a ballistic action impacts the magnitude of the facilitation of motor output by a loud acoustic stimulus (LAS), a phenomenon known as the StartReact effect. Participants executed ballistic wrist flexion movements and a LAS was presented simultaneously with the imperative signal in a subset of trials. We examined whether the force level or muscle used to maintain a contraction during preparation for the ballistic response impacted reaction time and/or the force of movements triggered by the LAS. These contractions were sustained either ipsilaterally or contralaterally to the ballistic response. The magnitude of facilitation by the LAS was greatest when low-force flexion contractions were maintained in the limb contralateral to the ballistic response during preparation. There was little change in facilitation when contractions recruited the contralateral extensor muscle or when they were sustained in the same limb that executed the ballistic response. We conclude that a larger network of neurons that may be engaged by a contralateral sustained contraction prior to initiation may be recruited by the LAS, further contributing to the motor output of the response. These findings may be particularly applicable in stroke rehabilitation, where engagement of the contralesional side may increase the benefits of a LAS to the functional recovery of movement.NEW & NOTEWORTHY The facilitation of reaction time, force, and vigor of a ballistic action by loud acoustic stimuli can be enhanced by the maintenance of a sustained contraction during preparation. This enhanced facilitation is observed when the sustained contraction is maintained with low force contralaterally and congruently with the ballistic response. This increased facilitation may be particularly applicable to rehabilitative applications of loud acoustic stimuli in improving the functional recovery of movement after neurological conditions such as stroke.


Asunto(s)
Movimiento , Músculo Esquelético , Estimulación Acústica , Acústica , Electromiografía , Humanos , Movimiento/fisiología , Músculo Esquelético/fisiología , Tiempo de Reacción/fisiología , Extremidad Superior
2.
J Physiol ; 599(18): 4389-4406, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34339524

RESUMEN

KEY POINTS: Suppression of corticospinal excitability is reliably observed during preparation for a range of motor actions, leading to the belief that this preparatory inhibition is a physiologically obligatory component of motor preparation. The neurophysiological function of this suppression is uncertain. We restricted the time available for participants to engage in preparation and found no evidence for preparatory inhibition. The function of preparatory inhibition can be inferred from our findings that sensory stimulation can disrupt motor output in the absence of preparatory inhibition, but enhance motor output when inhibition is present. These findings suggest preparatory inhibition may be a strategic process which acts to protect prepared actions from external interference. Our findings have significant theoretical implications for preparatory processes. Findings may also have a pragmatic benefit in that acoustic stimulation could be used therapeutically to facilitate movement, but only if the action can be prepared well in advance. ABSTRACT: Shortly before movement initiation, the corticospinal system undergoes a transient suppression. This phenomenon has been observed across a range of motor tasks, suggesting that it may be an obligatory component of movement preparation. We probed whether this was also the case when the urgency to perform a motor action was high, in a situation where little time was available to engage in preparatory processes. We controlled the urgency of an impending motor action by increasing or decreasing the foreperiod duration in an anticipatory timing task. Transcranial magnetic stimulation (TMS; experiment 1) or a loud acoustic stimulus (LAS; experiment 2) were used to examine how corticospinal and subcortical excitability were modulated during motor preparation. Preparatory inhibition of the corticospinal tract was absent when movement urgency was high, though motor actions were initiated on time. In contrast, subcortical circuits were progressively inhibited as the time to prepare increased. Interestingly, movement force and vigour were reduced by both TMS and the LAS when movement urgency was high, and enhanced when movement urgency was low. These findings indicate that preparatory inhibition may not be an obligatory component of motor preparation. The behavioural effects we observed in the absence of preparatory inhibition were induced by both TMS and the LAS, suggesting that accessory sensory stimulation may disrupt motor output when such stimulation is presented in the absence of preparatory inhibition. We conclude that preparatory inhibition may be an adaptive strategy which can serve to protect the prepared motor action from external interference.


Asunto(s)
Potenciales Evocados Motores , Corteza Motora , Estimulación Acústica , Electromiografía , Humanos , Movimiento , Tractos Piramidales , Tiempo de Reacción , Estimulación Magnética Transcraneal
3.
Eur J Neurosci ; 53(5): 1545-1568, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32935412

RESUMEN

There has been much debate concerning whether startling sensory stimuli can activate a fast-neural pathway for movement triggering (StartReact) which is different from that of voluntary movements. Activity in sternocleidomastoid (SCM) electromyogram is suggested to indicate activation of this pathway. We evaluated whether SCM activity can accurately identify trials which may differ in their neurophysiological triggering and assessed the use of cumulative distribution functions (CDFs) of reaction time (RT) data to identify trials with the shortest RTs for analysis. Using recent data sets from the StartReact literature, we examined the relationship between RT and SCM activity. We categorised data into short/longer RT bins using CDFs and used linear mixed-effects models to compare potential conclusions that can be drawn when categorising data on the basis of RT versus on the basis of SCM activity. The capacity of SCM to predict RT is task-specific, making it an unreliable indicator of distinct neurophysiological mechanisms. Classification of trials using CDFs is capable of capturing potential task- or muscle-related differences in triggering whilst avoiding the pitfalls of the traditional SCM activity-based classification method. We conclude that SCM activity is not always evident on trials that show the early triggering of movements seen in the StartReact phenomenon. We further propose that a more comprehensive analysis of data may be achieved through the inclusion of CDF analyses. These findings have implications for future research investigating movement triggering as well as for potential therapeutic applications of StartReact.


Asunto(s)
Movimiento , Reflejo de Sobresalto , Estimulación Acústica , Electromiografía , Músculos del Cuello , Tiempo de Reacción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA