Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 31(28): 10392-402, 2011 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-21753016

RESUMEN

The ventral prefrontal cortex (vPFC) is involved in reinforcement-based learning and is associated with depression, obsessive-compulsive disorder, and addiction. Neuroimaging is increasingly used to develop models of vPFC connections, to examine white matter (WM) integrity, and to target surgical interventions, including deep brain stimulation. We used primate (Macaca nemestrina/Macaca fascicularis) tracing studies and 3D reconstructions of WM tracts to delineate the rules vPFC projections follow to reach their targets. vPFC efferent axons travel through the uncinate fasciculus, connecting different vPFC regions and linking different functional regions. The uncinate fasciculus also is a conduit for vPFC fibers to reach other cortical bundles. Fibers in the internal capsule are organized according to destination. Thalamic fibers from each vPFC region travel dorsal to their brainstem fibers. The results show regional differences in the trajectories of fibers from different vPFC areas. Overall, the medial/lateral vPFC position dictates the route that fibers take to enter major WM tracts, as well as the position within specific tracts: axons from medial vPFC regions travel ventral to those from more lateral areas. This arrangement, coupled with dorsal/ventral organization of thalamic/brainstem fibers through the internal capsule, results in a complex mingling of thalamic and brainstem axons from different vPFC areas. Together, these data provide the foundation for dividing vPFC WM bundles into functional components and for predicting what is likely to be carried at different points through each bundle. These results also help determine the specific connections that are likely to be captured at different neurosurgical targets.


Asunto(s)
Axones/fisiología , Tronco Encefálico/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Tálamo/fisiología , Animales , Estimulación Encefálica Profunda , Imagen de Difusión Tensora , Macaca fascicularis , Macaca nemestrina , Masculino , Vías Nerviosas
2.
J Neural Eng ; 8(4): 046001, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21623007

RESUMEN

Deep brain stimulation (DBS) of the thalamus has been demonstrated to be effective for the treatment of epilepsy. To investigate the mechanism of action of thalamic DBS, we examined the effects of high frequency stimulation (HFS) on spindle oscillations in thalamic brain slices from ferrets. We recorded intracellular and extracellular electrophysiological activity in the nucleus reticularis thalami (nRt) and in thalamocortical relay (TC) neurons in the lateral geniculate nucleus, stimulated the slice using a concentric bipolar electrode, and recorded the level of glutamate within the slice. HFS (100 Hz) of TC neurons generated excitatory post-synaptic potentials, increased the number of action potentials in both TC and nRt neurons, reduced the input resistance, increased the extracellular glutamate concentration, and abolished spindle wave oscillations. HFS of the nRt also suppressed spindle oscillations. In both locations, HFS was associated with significant and persistent elevation in extracellular glutamate levels and suppressed spindle oscillations for many seconds after the cessation of stimulation. We simulated HFS within a computational model of the thalamic network, and HFS also disrupted spindle wave activity, but the suppression of spindle activity was short-lived. Simulated HFS disrupted spindle activity for prolonged periods of time only after glutamate release and glutamate-mediated activation of a hyperpolarization-activated current (I(h)) was incorporated into the model. Our results suggest that the mechanism of action of thalamic DBS as used in epilepsy may involve the prolonged release of glutamate, which in turn modulates specific ion channels such as I(h), decreases neuronal input resistance, and abolishes thalamic network oscillatory activity.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Hurones/fisiología , Red Nerviosa/fisiología , Tálamo/fisiología , Potenciales de Acción/fisiología , Algoritmos , Animales , Técnicas Biosensibles , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Simulación por Computador , Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Fenómenos Electrofisiológicos , Epilepsia/terapia , Femenino , Ácido Glutámico/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Interneuronas/fisiología , Potenciales de la Membrana/fisiología , Modelos Neurológicos , Canales de Potasio/fisiología
3.
J Neural Eng ; 6(4): 046001, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19494421

RESUMEN

Deep brain stimulation (DBS) represents a powerful clinical technology, but a systematic characterization of the electrical interactions between the electrode and the brain is lacking. The goal of this study was to examine the in vivo changes in the DBS electrode impedance that occur after implantation and during clinically relevant stimulation. Clinical DBS devices typically apply high-frequency voltage-controlled stimulation, and as a result, the injected current is directly regulated by the impedance of the electrode-tissue interface. We monitored the impedance of scaled-down clinical DBS electrodes implanted in the thalamus and subthalamic nucleus of a rhesus macaque using electrode impedance spectroscopy (EIS) measurements ranging from 0.5 Hz to 10 kHz. To further characterize our measurements, equivalent circuit models of the electrode-tissue interface were used to quantify the role of various interface components in producing the observed electrode impedance. Following implantation, the DBS electrode impedance increased and a semicircular arc was observed in the high-frequency range of the EIS measurements, commonly referred to as the tissue component of the impedance. Clinically relevant stimulation produced a rapid decrease in electrode impedance with extensive changes in the tissue component. These post-operative and stimulation-induced changes in impedance could play an important role in the observed functional effects of voltage-controlled DBS and should be considered during clinical stimulation parameter selection and chronic animal research studies.


Asunto(s)
Encéfalo/fisiología , Estimulación Encefálica Profunda/instrumentación , Electrodos Implantados , Animales , Impedancia Eléctrica , Estimulación Eléctrica , Macaca mulatta , Modelos Neurológicos , Núcleo Subtalámico/fisiología , Tálamo/fisiología , Factores de Tiempo
4.
Exp Neurol ; 219(1): 359-62, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19409895

RESUMEN

Deep brain stimulation (DBS), a surgical therapy for advanced Parkinson's disease (PD), is known to change neuronal activity patterns in the pallidothalamic circuit. Whether these effects translate to the motor cortex and, if so, how they might modulate the functional responses of individual neurons in primary motor cortex remains uncertain. A 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkey was implanted with a DBS lead spanning internal and external segments of globus pallidus. During therapeutic stimulation (135 Hz) for rigidity and bradykinesia, neurons in primary motor cortex (M1) exhibited an inhibitory phase-locking (2-5 ms) to the stimulus, an overall decrease in mean discharge rate, and an increase in response specificity to passive limb movement. Sub-therapeutic DBS (30 Hz) still produced entrainment to the stimulation, but the mean discharge rate and specificity to movement were not changed. Lower stimulation intensities (at 135 Hz), which no longer improved motor symptoms, had little effect on M1 activity. These findings suggest that DBS improves parkinsonian motor symptoms by inducing global changes in firing pattern and rate along the pallido-thalamocortical sensorimotor circuit.


Asunto(s)
Potenciales de Acción/fisiología , Terapia por Estimulación Eléctrica/métodos , Globo Pálido/fisiología , Corteza Motora/fisiología , Neuronas/fisiología , Trastornos Parkinsonianos/fisiopatología , Trastornos Parkinsonianos/terapia , Animales , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Potenciales Evocados Motores/fisiología , Globo Pálido/anatomía & histología , Macaca mulatta , Corteza Motora/anatomía & histología , Movimiento/fisiología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Recuperación de la Función/fisiología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/fisiopatología , Resultado del Tratamiento
5.
Exp Neurol ; 216(1): 166-76, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19118551

RESUMEN

Deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson's disease and shows great promise for numerous other disorders. While the fundamental purpose of DBS is to modulate neural activity with electric fields, little is known about the actual voltage distribution generated in the brain by DBS electrodes and as a result it is difficult to accurately predict which brain areas are directly affected by the stimulation. The goal of this study was to characterize the spatial and temporal characteristics of the voltage distribution generated by DBS electrodes. We experimentally recorded voltages around active DBS electrodes in either a saline bath or implanted in the brain of a non-human primate. Recordings were made during voltage-controlled and current-controlled stimulation. The experimental findings were compared to volume conductor electric field models of DBS parameterized to match the different experiments. Three factors directly affected the experimental and theoretical voltage measurements: 1) DBS electrode impedance, primarily dictated by a voltage drop at the electrode-electrolyte interface and the conductivity of the tissue medium, 2) capacitive modulation of the stimulus waveform, and 3) inhomogeneity and anisotropy of the tissue medium. While the voltage distribution does not directly predict the neural response to DBS, the results of this study do provide foundational building blocks for understanding the electrical parameters of DBS and characterizing its effects on the nervous system.


Asunto(s)
Encéfalo/efectos de la radiación , Estimulación Encefálica Profunda/métodos , Campos Electromagnéticos , Potenciales de la Membrana/efectos de la radiación , Animales , Encéfalo/anatomía & histología , Encéfalo/fisiología , Membrana Celular/fisiología , Simulación por Computador , Capacidad Eléctrica , Impedancia Eléctrica , Electrodos Implantados/normas , Electrónica Médica/instrumentación , Electrónica Médica/métodos , Macaca mulatta , Potenciales de la Membrana/fisiología , Modelos Neurológicos , Procesamiento de Señales Asistido por Computador , Técnicas Estereotáxicas/instrumentación , Núcleo Subtalámico/anatomía & histología , Núcleo Subtalámico/fisiología , Núcleo Subtalámico/efectos de la radiación , Tálamo/anatomía & histología , Tálamo/fisiología , Tálamo/efectos de la radiación
6.
J Neurophysiol ; 99(3): 1477-92, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18171706

RESUMEN

The therapeutic effectiveness of deep brain stimulation (DBS) of the subthalamic nucleus (STN) may arise through its effects on inhibitory basal ganglia outputs, including those from the internal segment of the globus pallidus (GPi). Changes in GPi activity will impact its thalamic targets, representing a possible pathway for STN-DBS to modulate basal ganglia-thalamocortical processing. To study the effect of STN-DBS on thalamic activity, we examined thalamocortical (TC) relay cell responses to an excitatory input train under a variety of inhibitory signals, using a computational model. The inhibitory signals were obtained from single-unit GPi recordings from normal monkeys and from monkeys rendered parkinsonian through arterial 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine injection. The parkinsonian GPi data were collected in the absence of STN-DBS, under sub-therapeutic STN-DBS, and under therapeutic STN-DBS. Our simulations show that inhibition from parkinsonian GPi activity recorded without DBS-compromised TC relay of excitatory inputs compared with the normal case, whereas TC relay fidelity improved significantly under inhibition from therapeutic, but not sub-therapeutic, STN-DBS GPi activity. In a heterogeneous model TC cell population, response failures to the same input occurred across multiple TC cells significantly more often without DBS than in the therapeutic DBS case and in the normal case. Inhibitory signals preceding successful TC relay were relatively constant, whereas those before failures changed more rapidly. Computationally generated inhibitory inputs yielded similar effects on TC relay. These results support the hypothesis that STN-DBS alters parkinsonian GPi activity in a way that may improve TC relay fidelity.


Asunto(s)
Corteza Cerebral/fisiología , Simulación por Computador , Estimulación Encefálica Profunda/métodos , Modelos Neurológicos , Neuronas/efectos de la radiación , Núcleo Subtalámico/fisiología , Tálamo/fisiología , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de la radiación , Animales , Mapeo Encefálico , Corteza Cerebral/citología , Humanos , Inhibición Neural/fisiología , Inhibición Neural/efectos de la radiación , Vías Nerviosas/fisiología , Neuronas/fisiología , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Tálamo/citología
7.
Clin Neurophysiol ; 115(6): 1239-48, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15134690

RESUMEN

High-frequency deep brain stimulation (DBS) of the thalamus or basal ganglia represents an effective clinical technique for the treatment of several medically refractory movement disorders. However, understanding of the mechanisms responsible for the therapeutic action of DBS remains elusive. The goal of this review is to address our present knowledge of the effects of high-frequency stimulation within the central nervous system and comment on the functional implications of this knowledge for uncovering the mechanism(s) of DBS. Four general hypotheses have been developed to explain the mechanism(s) of DBS: depolarization blockade, synaptic inhibition, synaptic depression, and stimulation-induced modulation of pathological network activity. Using the results from functional imaging, neurochemistry, neural recording, and neural modeling experiments we address the general hypotheses and attempt to reconcile what have been considered conflicting results from these different research modalities. Our analysis suggests stimulation-induced modulation of pathological network activity represents the most likely mechanism of DBS; however, several open questions remain to explicitly link the effects of DBS with therapeutic outcomes.


Asunto(s)
Encéfalo/fisiología , Terapia por Estimulación Eléctrica , Trastornos del Movimiento/terapia , Animales , Humanos , Modelos Neurológicos , Trastornos del Movimiento/fisiopatología , Inhibición Neural/fisiología , Sinapsis/fisiología
8.
J Clin Neurophysiol ; 21(1): 40-50, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15097293

RESUMEN

High-frequency deep brain stimulation (DBS) of the thalamus or basal ganglia represents an effective clinical technique for the treatment of several medically refractory movement disorders (e.g., Parkinson's disease, essential tremor, and dystonia). In addition, new clinical applications of DBS for other neurologic and psychiatric disorders (e.g., epilepsy and obsessive-compulsive disorder) have been vaulted forward. Although DBS has been effective in the treatment of movement disorders and is rapidly being explored for the treatment of other neurologic disorders, the scientific understanding of its mechanisms of action remains unclear and continues to be debated in the scientific community. Optimization of DBS technology for present and future therapeutic applications will depend on identification of the therapeutic mechanism(s) of action. The goal of this review is to address the present knowledge of the effects of high frequency stimulation within the central nervous system and comment on the functional implications of this knowledge for uncovering the mechanism(s) of DBS. Four general hypotheses have been developed to explain the mechanism(s) of DBS: depolarization blockade, synaptic inhibition, synaptic depression, and stimulation-induced modulation of pathologic network activity. Using the results from microdialysis, neural recording, functional imaging, and neural modeling experiments, the authors address the main hypotheses and attempt to reconcile what have been considered conflicting results from different research modalities.


Asunto(s)
Ganglios Basales/fisiopatología , Terapia por Estimulación Eléctrica , Trastornos del Movimiento/terapia , Tálamo/fisiopatología , Humanos , Trastornos del Movimiento/fisiopatología , Red Nerviosa/fisiopatología , Inhibición Neural/fisiología , Redes Neurales de la Computación , Neuronas/fisiología , Transmisión Sináptica/fisiología , Resultado del Tratamiento
9.
Crit Rev Biomed Eng ; 30(4-6): 249-81, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12739751

RESUMEN

High-frequency deep brain stimulation (DBS) of the thalamus or basal ganglia represents an effective clinical technique for the treatment of several medically refractory movement disorders, including Parkinson's disease. However, understanding of the mechanisms of action of DBS remains elusive. The goal of this review is to address our understanding of the effects of high-frequency stimulation within the central nervous system based on results from functional imaging, neural recording, and neural modeling experiments. Using these results, we address the main hypotheses on the mechanisms of action of DBS and conclude that stimulation-induced desynchronization of network oscillations represents the hypothesis that best explains the presently available data.


Asunto(s)
Ganglios Basales/fisiopatología , Terapia por Estimulación Eléctrica/métodos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/terapia , Tálamo/fisiopatología , Encéfalo/fisiopatología , Mapeo Encefálico/métodos , Terapia por Estimulación Eléctrica/instrumentación , Humanos , Imagen por Resonancia Magnética/métodos , Modelos Neurológicos , Red Nerviosa/fisiopatología , Vías Nerviosas/fisiopatología , Neuronas , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/cirugía , Prótesis e Implantes , Tomografía Computarizada de Emisión/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA