Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Struct Biol ; 207(3): 279-286, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31200020

RESUMEN

Yersinia enterocolitica is a pectinolytic zoonotic foodborne pathogen, the genome of which contains pectin-binding proteins and several different classes of pectinases, including polysaccharide lyases (PLs) and an exopolygalacturonase. These proteins operate within a coordinated pathway to completely saccharify homogalacturonan (HG). Polysaccharide lyase family 2 (PL2) is divided into two major subfamilies that are broadly-associated with contrasting 'endolytic' (PL2A) or 'exolytic' (PL2B) activities on HG. In the Y. enterocolitica genome, the PL2A gene is adjacent to an independent carbohydrate binding module from family 32 (YeCBM32), which possesses a N-terminal secretion tag and is known to specifically bind HG. Independent CBMs are rare in nature and, most commonly, are fused to enzymes in order to potentiate catalysis. The unconventional gene architecture of YePL2A and YeCBM32, therefore, may represent an ancestral relic of a fission event that decoupled PL2A from its cognate CBM. To provide further insight into the evolution of this pectinolytic locus and the molecular basis of HG depolymerisation within Y. enterocolitica, we have resurrected a YePL2A-YeCBM32 chimera and demonstrated that the extant PL2A digests HG more efficiently. In addition, we have engineered a tryptophan from the active site of the exolytic YePL2B into YePL2A (YePL2A-K291W) and demonstrated, using X-ray crystallography of substrate complexes, that it is a structural determinant of exo-activity within the PL2 family. In this manner, surrogate structural platforms may assist in the study of phylogenetic relationships informed by extant and resurrected sequences, and can be used to overcome challenging structural problems within carbohydrate active enzyme families.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Pectinas/metabolismo , Polisacárido Liasas/metabolismo , Yersinia enterocolitica/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Modelos Moleculares , Pectinas/química , Filogenia , Polisacárido Liasas/química , Polisacárido Liasas/genética , Conformación Proteica , Triptófano/química , Triptófano/genética , Triptófano/metabolismo , Yersinia enterocolitica/enzimología , Yersinia enterocolitica/genética
2.
Nat Microbiol ; 3(2): 210-219, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29255254

RESUMEN

The major nutrients available to human colonic Bacteroides species are glycans, exemplified by pectins, a network of covalently linked plant cell wall polysaccharides containing galacturonic acid (GalA). Metabolism of complex carbohydrates by the Bacteroides genus is orchestrated by polysaccharide utilization loci (PULs). In Bacteroides thetaiotaomicron, a human colonic bacterium, the PULs activated by different pectin domains have been identified; however, the mechanism by which these loci contribute to the degradation of these GalA-containing polysaccharides is poorly understood. Here we show that each PUL orchestrates the metabolism of specific pectin molecules, recruiting enzymes from two previously unknown glycoside hydrolase families. The apparatus that depolymerizes the backbone of rhamnogalacturonan-I is particularly complex. This system contains several glycoside hydrolases that trim the remnants of other pectin domains attached to rhamnogalacturonan-I, and nine enzymes that contribute to the degradation of the backbone that makes up a rhamnose-GalA repeating unit. The catalytic properties of the pectin-degrading enzymes are optimized to protect the glycan cues that activate the specific PULs ensuring a continuous supply of inducing molecules throughout growth. The contribution of Bacteroides spp. to metabolism of the pectic network is illustrated by cross-feeding between organisms.


Asunto(s)
Bacteroides/metabolismo , Colon/microbiología , Dieta , Pectinas/metabolismo , Polisacáridos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroides/enzimología , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Genes Bacterianos/genética , Glicósido Hidrolasas , Ácidos Hexurónicos , Humanos , Mutagénesis Sitio-Dirigida , Células Vegetales/metabolismo
3.
Proc Natl Acad Sci U S A ; 113(22): 6188-93, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27185956

RESUMEN

Uronates are charged sugars that form the basis of two abundant sources of biomass-pectin and alginate-found in the cell walls of terrestrial plants and marine algae, respectively. These polysaccharides represent an important source of carbon to those organisms with the machinery to degrade them. The microbial pathways of pectin and alginate metabolism are well studied and essentially parallel; in both cases, unsaturated monouronates are produced and processed into the key metabolite 2-keto-3-deoxygluconate (KDG). The enzymes required to catalyze each step have been identified within pectinolytic and alginolytic microbes; yet the function of a small ORF, kdgF, which cooccurs with the genes for these enzymes, is unknown. Here we show that KdgF catalyzes the conversion of pectin- and alginate-derived 4,5-unsaturated monouronates to linear ketonized forms, a step in uronate metabolism that was previously thought to occur spontaneously. Using enzyme assays, NMR, mutagenesis, and deletion of kdgF, we show that KdgF proteins from both pectinolytic and alginolytic bacteria catalyze the ketonization of unsaturated monouronates and contribute to efficient production of KDG. We also report the X-ray crystal structures of two KdgF proteins and propose a mechanism for catalysis. The discovery of the function of KdgF fills a 50-y-old gap in the knowledge of uronate metabolism. Our findings have implications not only for the understanding of an important metabolic pathway, but also the role of pectinolysis in plant-pathogen virulence and the growing interest in the use of pectin and alginate as feedstocks for biofuel production.


Asunto(s)
Alginatos/metabolismo , Proteínas Bacterianas/metabolismo , Gluconatos/metabolismo , Pectinas/metabolismo , Polisacáridos/metabolismo , Ácidos Urónicos/metabolismo , Yersinia enterocolitica/metabolismo , Proteínas Bacterianas/química , Cristalografía por Rayos X , Ácido Glucurónico/metabolismo , Ácidos Hexurónicos/metabolismo , Conformación Proteica , Yersinia enterocolitica/crecimiento & desarrollo
4.
J Biol Chem ; 290(35): 21231-43, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26160170

RESUMEN

Family 2 polysaccharide lyases (PL2s) preferentially catalyze the ß-elimination of homogalacturonan using transition metals as catalytic cofactors. PL2 is divided into two subfamilies that have been generally associated with secretion, Mg(2+) dependence, and endolysis (subfamily 1) and with intracellular localization, Mn(2+) dependence, and exolysis (subfamily 2). When present within a genome, PL2 genes are typically found as tandem copies, which suggests that they provide complementary activities at different stages along a catabolic cascade. This relationship most likely evolved by gene duplication and functional divergence (i.e. neofunctionalization). Although the molecular basis of subfamily 1 endolytic activity is understood, the adaptations within the active site of subfamily 2 enzymes that contribute to exolysis have not been determined. In order to investigate this relationship, we have conducted a comparative enzymatic analysis of enzymes dispersed within the PL2 phylogenetic tree and elucidated the structure of VvPL2 from Vibrio vulnificus YJ016, which represents a transitional member between subfamiles 1 and 2. In addition, we have used ancestral sequence reconstruction to functionally investigate the segregated evolutionary history of PL2 progenitor enzymes and illuminate the molecular evolution of exolysis. This study highlights that ancestral sequence reconstruction in combination with the comparative analysis of contemporary and resurrected enzymes holds promise for elucidating the origins and activities of other carbohydrate active enzyme families and the biological significance of cryptic metabolic pathways, such as pectinolysis within the zoonotic marine pathogen V. vulnificus.


Asunto(s)
Bacterias/enzimología , Evolución Molecular , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Secuencia de Aminoácidos , Bacterias/química , Bacterias/genética , Bacterias/metabolismo , Magnesio/metabolismo , Manganeso/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Polisacárido Liasas/química , Conformación Proteica , Alineación de Secuencia , Vibrio vulnificus/química , Vibrio vulnificus/enzimología , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA