Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Steroids ; 183: 109032, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35381271

RESUMEN

Peroxisomes play an important role in regulating cell metabolism and RedOx homeostasis. Peroxisomal dysfunctions favor oxidative stress and cell death. The ability of 7ß-hydroxycholesterol (7ß-OHC; 50 µM, 24 h), known to be increased in patients with age-related diseases such as sarcopenia, to trigger oxidative stress, mitochondrial and peroxisomal dysfunction was studied in murine C2C12 myoblasts. The capacity of milk thistle seed oil (MTSO, 100 µg/mL) as well as α-tocopherol (400 µM; reference cytoprotective agent) to counteract the toxic effects of 7ß-OHC, mainly at the peroxisomal level were evaluated. The impacts of 7ß-OHC, in the presence or absence of MTSO or α-tocopherol, were studied with complementary methods: measurement of cell density and viability, quantification of reactive oxygen species (ROS) production and transmembrane mitochondrial potential (ΔΨm), evaluation of peroxisomal mass as well as topographic, morphologic and functional peroxisomal changes. Our results indicate that 7ß-OHC induces a loss of cell viability and a decrease of cell adhesion associated with ROS overproduction, alterations of mitochondrial ultrastructure, a drop of ΔΨm, and several peroxisomal modifications. In the presence of 7ß-OHC, comparatively to untreated cells, important quantitative and qualitative peroxisomal modifications were also identified: a) a reduced number of peroxisomes with abnormal sizes and shapes, mainly localized in cytoplasmic vacuoles, were observed; b) the peroxisomal mass was decreased as indicated by lower protein and mRNA levels of the peroxisomal ABCD3 transporter; c) lower mRNA level of Pex5 involved in peroxisomal biogenesis as well as higher mRNA levels of Pex13 and Pex14, involved in peroxisomal biogenesis and/or pexophagy, was found; d) lower levels of ACOX1 and MFP2 enzymes, implicated in peroxisomal ß-oxidation, were detected; e) higher levels of very-long-chain fatty acids, which are substrates of peroxisomal ß-oxidation, were found. These different cytotoxic effects were strongly attenuated by MTSO, in the same range of order as with α-tocopherol. These findings underline the interest of MTSO and α-tocopherol in the prevention of peroxisomal damages (pexotherapy).


Asunto(s)
Silybum marianum , alfa-Tocoferol , Animales , Antioxidantes/farmacología , Flavonoides , Humanos , Hidroxicolesteroles , Ratones , Silybum marianum/metabolismo , Mioblastos/metabolismo , Aceites de Plantas , ARN Mensajero , Especies Reactivas de Oxígeno/metabolismo , alfa-Tocoferol/farmacología
2.
Biomolecules ; 11(6)2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071950

RESUMEN

Oxysterols are assumed to be the driving force behind numerous neurodegenerative diseases. In this work, we aimed to study the ability of 7ß-hydroxycholesterol (7ß-OHC) to trigger oxidative stress and cell death in human neuroblastoma cells (SH-SY5Y) then the capacity of Nigella sativa and Milk thistle seed oils (NSO and MTSO, respectively) to oppose 7ß-OHC-induced side effects. The impact of 7ß-OHC, associated or not with NSO or MTSO, was studied on different criteria: cell viability; redox status, and apoptosis. Oxidative stress was assessed through the intracellular reactive oxygen species (ROS) production, levels of enzymatic and non-enzymatic antioxidants, lipid, and protein oxidation products. Our results indicate that 7ß-OHC (40 µg/mL) exhibit pr-oxidative and pro-apoptotic activities shown by a decrease of the antioxidant enzymatic activities and an increase of ROS production, lipid, and protein oxidation end products as well as nitrotyrosine formation and caspase 3 activation. However, under the pre-treatment with NSO, and especially with MTSO (100 µg/mL), a marked attenuation of oxidative damages was observed. Our study suggests harmful effects of 7ß-OHC consisting of pro-oxidative, anti-proliferative, and pro-apoptotic activities that may contribute to neurodegeneration. NSO and especially MTSO showed potential cytoprotection against the cytotoxicity of 7ß-OHC.


Asunto(s)
Citoprotección/efectos de los fármacos , Citotoxinas/toxicidad , Hidroxicolesteroles/toxicidad , Nigella/química , Estrés Oxidativo/efectos de los fármacos , Aceites de Plantas , Semillas/química , Silybum marianum/química , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Aceites de Plantas/química , Aceites de Plantas/farmacología
3.
Curr Pharm Des ; 25(15): 1791-1805, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31298157

RESUMEN

BACKGROUND: The effects of vegetable oils on human health depend on their components. Therefore, their profiles of lipid nutrients and polyphenols were determined. OBJECTIVE: To establish and compare the fatty acid, tocopherol, phytosterol and polyphenol profiles of Mediterranean oils: cosmetic and dietary argan oils (AO; Morocco: Agadir, Berkane); olive oils (OO; Morocco, Spain, Tunisia); milk thistle seed oils (MTSO; Tunisia: Bizerte, Sousse, Zaghouane); nigella seed oil (NSO). METHODS: The biochemical profiles were determined by gas chromatography-flame ionization, high performance liquid chromatography and gas chromatography, coupled with mass spectrometry as required. The antioxidant and cytoprotective activities were evaluated with the KRL (Kit Radicaux Libres) and the fluorescein diacetate tests on nerve cells treated with 7-ketocholesterol (7KC). RESULTS: The fatty acid profile revealed high linoleic acid (C18:2 n-6) content in AO, OO, MTSO and NSO. The highest levels of oleic acid (C18:1 n-9) were found in AO and OO. The tocopherol profile showed that Agadir AO contained the highest amount of α-tocopherol, also present at high level in MTSO and Tunisian OO; Berkane AO was rich in γ-tocopherol. The phytosterol profile indicated that ß-sitosterol was predominant in the oils, except AO; spinasterol was only present in AO. Polyphenol profiles underlined that OO was the richest in polyphenols; hydroxytyrosol was only found in OO; few polyphenols were detected in AO. The oils studied have antioxidant activities, and all of them, except NSO, prevented 7KC-induced cell death. The antioxidant characteristics of AO were positively correlated with procatechic acid and compestanol levels. CONCLUSION: Based on their biochemical profiles, antioxidant and cytoprotective characteristics, AO, OO, and MTSO are potentially beneficial to human health.


Asunto(s)
Ácidos Grasos/análisis , Fitosteroles/análisis , Aceites de Plantas/análisis , Polifenoles/análisis , Tocoferoles/análisis , Animales , Antioxidantes/análisis , Línea Celular , Humanos , Ratones , Silybum marianum/química , Nigella/química , Aceite de Oliva/química , Semillas/química
4.
Crit Rev Food Sci Nutr ; 59(19): 3179-3198, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29993272

RESUMEN

Cholesterol oxidation products, also named oxysterols, can be formed either by cholesterol auto-oxidation, enzymatically or both. Among these oxysterols, 7-ketocholesterol (7KC) is mainly formed during radical attacks that take place on the carbon 7 of cholesterol. As increased levels of 7KC have been found in the tissues, plasma and/or cerebrospinal fluid of patients with major diseases, especially age-related diseases (cardiovascular diseases, eye diseases, neurodegenerative diseases), some cancers, and chronic inflammatory diseases, it is suspected that 7KC, could contribute to their development. Since 7KC, provided by the diet or endogenously formed, is not or little efficiently metabolized, except in hepatic cells, its cellular accumulation can trigger numerous side effects including oxidative stress, inflammation and cell death. To counteract 7KC-induced side effects, it is necessary to characterize the metabolic pathways activated by this oxysterol to identify potential targets for cytoprotection and geroprotection. Currently, several natural compounds (tocopherols, fatty acids, polyphenols, etc) or mixtures of compounds (oils) used in traditional medicine are able to inhibit the deleterious effects of 7KC. The different molecules identified could be valued in different ways (functional foods, recombinant molecules, theranostic) to prevent or treat diseases associated with 7KC.


Asunto(s)
Cetocolesteroles/efectos adversos , Enfermedades no Transmisibles/prevención & control , Antioxidantes/farmacología , Ácidos Grasos/farmacología , Humanos , Inflamación/prevención & control , Oxidación-Reducción , Estrés Oxidativo , Polifenoles/farmacología , Tocoferoles/farmacología
5.
Antioxidants (Basel) ; 7(7)2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30029553

RESUMEN

The Asteraceae family is economically very important, because many of these plants are grown mainly for their food value, such as lettuce (Lactuca), chicory (Cichorium), and sunflower (Heliantus aminus). One of the typical properties of this family, which includes milk thistle (Sylibum marianum), is the richness of the oil in various compounds (flavonoids, alkaloids, tocopherols, and unsaturated fatty acids). Currently, and for the coming decades, age-related diseases, including neurodegenerative diseases, are a major public health problem. Preventing their appearance or opposing their evolution is a major objective. In this context, the cytoprotective activities of milk thistle seed oil produced in Tunisia were studied on the 158N model using 7-ketocholesterol (7KC) and 24S-hydroxycholesterol (24S) as cytotoxic agents. 7KC and 24S were used because they can be increased in the brain and body fluids of patients with major age-related neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. In order to evaluate the cytoprotective properties of milk thistle seed oil, complementary techniques of microscopy, flow cytometry, and biochemistry were used. The chemical composition of milk thistle seed oil has also been determined by various chromatography techniques. Milk thistle seed oils from different area of Tunisia are rich in tocopherols and are strongly antioxidant according to various biochemical tests (KRL (Kit Radicaux Libres), FRAP (Ferric Reducing Antioxidant Power), and DPPH (2,2-diphenyl-1-picrylhydrazyl)). The main fatty acids are linoleic acid (C18:2 n-6) and oleic acid (C18:1 n-9). The main polyphenols identified are homovanillic acid, p-coumaric acid, quercetin, and apigenin, with a predominance of vanillic acid. On 158N cells, milk thistle seed oil attenuates the cytotoxicity of 7KC and 24S including: loss of cell adhesion, increased plasma membrane permeability, mitochondrial dysfunction, overproduction of reactive oxygen species, induction of apoptosis, and autophagy. The attenuation of the cytotoxicity of 7KC and 24S observed with the milk thistle seed oil is in the order of that observed with α-tocopherol used as a positive control. In the presence of nigella seed oil, considered potentially cytotoxic, no cytoprotective effects were observed. Given the chemical characteristics, antioxidant properties, and cytoprotective activities of milk thistle seed oil, our results highlight the potential benefit of this oil for human health.

6.
Int J Mol Sci ; 18(12)2017 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-29207484

RESUMEN

In this study, milk thistle seeds growing in different areas in Tunisia were cold pressed and the extracted oils were examined for their chemical and antioxidant properties. The major fatty acids were linoleic acid (C18:2) (57.0%, 60.0%, and 60.3% for the milk thistle seed oils native to Bizerte, Zaghouan and Sousse, respectively) and oleic acid (C18:1) (15.5%, 21.5%, and 22.4% for the milk thistle seed oils originating from Bizerte, Zaghouan and Sousse, respectively). High performance liquid chromatography (HPLC) analysis showed the richness of the milk thistle seed oils (MTSO) in α-tocopherol. The highest content was recorded for that of the region of Zaghouan (286.22 mg/kg). The total phenolic contents (TPC) of Zaghouan, Bizerte, and Sousse were 1.59, 8.12, and 4.73 Gallic Acid Equivalent (GAE) mg/g, respectively. Three phenolic acids were also identified (vanillic, p-coumaric, and silybine), with a predominance of the vanillic acid. The highest value was recorded for the Zaghouan milk thistle seed oil (83 mg/100 g). Differences in outcomes between regions may be due to climatic differences in areas. Zaghouan's cold-pressed milk thistle seed oil had a better quality than those of Bizerte and Sousse, and can be considered as a valuable source for new multi-purpose products or by-products for industrial, cosmetic, and pharmaceutical utilization.


Asunto(s)
Antioxidantes/química , Aceites de Plantas/química , Silybum marianum/química , Rastreo Diferencial de Calorimetría , Cromatografía Liquida , Ácidos Grasos/química , Ácidos Grasos/farmacología , Hidroxibenzoatos/química , Semillas/química , Túnez , alfa-Tocoferol/química
7.
Int J Mol Sci ; 18(10)2017 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-29065513

RESUMEN

Argan oil is widely used in Morocco in traditional medicine. Its ability to treat cardiovascular diseases is well-established. However, nothing is known about its effects on neurodegenerative diseases, which are often associated with increased oxidative stress leading to lipid peroxidation and the formation of 7-ketocholesterol (7KC) resulting from cholesterol auto-oxidation. As 7KC induces oxidative stress, inflammation and cell death, it is important to identify compounds able to impair its harmful effects. These compounds may be either natural or synthetic molecules or mixtures of molecules such as oils. In this context: (i) the lipid profiles of dietary argan oils from Berkane and Agadir (Morocco) in fatty acids, phytosterols, tocopherols and polyphenols were determined by different chromatographic techniques; and (ii) their anti-oxidant and cytoprotective effects in 158N murine oligodendrocytes cultured with 7KC (25-50 µM; 24 h) without and with argan oil (0.1% v/v) or α-tocopherol (400 µM, positive control) were evaluated with complementary techniques of cellular and molecular biology. Among the unsaturated fatty acids present in argan oils, oleate (C18:1 n-9) and linoleate (C18:1 n-6) were the most abundant; the highest quantities of saturated fatty acids were palmitate (C16:0) and stearate (C18:0). Several phytosterols were found, mainly schottenol and spinasterol (specific to argan oil), cycloartenol, ß-amyrin and citrostadienol. α- and γ-tocopherols were also present. Tyrosol and protocatechic acid were the only polyphenols detected. Argan and extra virgin olive oils have many compounds in common, principally oleate and linoleate, and tocopherols. Kit Radicaux Libres (KRL) and ferric reducing antioxidant power (FRAP) tests showed that argan and extra virgin olive oils have anti-oxidant properties. Argan oils were able to attenuate the cytotoxic effects of 7KC on 158N cells: loss of cell adhesion, cell growth inhibition, increased plasma membrane permeability, mitochondrial, peroxisomal and lysosomal dysfunction, and the induction of oxiapoptophagy (OXIdation + APOPTOsis + autoPHAGY). Altogether, our data obtained in 158N oligodendrocytes provide evidence that argan oil is able to counteract the toxic effects of 7KC on nerve cells, thus suggesting that some of its compounds could prevent or mitigate neurodegenerative diseases to the extent that they are able to cross the blood-brain barrier.


Asunto(s)
Cetocolesteroles/toxicidad , Fármacos Neuroprotectores/farmacología , Oligodendroglía/efectos de los fármacos , Aceites de Plantas/farmacología , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Línea Celular , Peroxidación de Lípido , Lisosomas/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Peroxisomas/efectos de los fármacos , alfa-Tocoferol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA