Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067488

RESUMEN

Diospyros mespiliformis Hochst. ex. A. DC is widely distributed throughout Africa and around the world. It is utilized ethnobotanically to treat fevers, wounds, malaria, diabetes mellitus, and other diseases. This review aims to provide an exhaustive overview of the traditional uses, pharmacology, and phytochemical analysis of D. mespiliformis, with the objective of identifying its therapeutic potential for further research. Scientific resources, including Google Scholar, Science Direct, Web of Science, Pub Med, and Scopus, were used to find pertinent data on D. mespiliformis. Secondary metabolites tentatively identified from this species were primarily terpenoids, naphthoquinones, phenolics, and coumarins. D. mespiliformis has been reported to demonstrate pharmacological activities, including antimicrobial, antiproliferative, antiparasitic, antioxidant, anti-inflammatory, antiviral, anti-hypersensitivity, and antidiabetic properties. The phytochemicals and extracts from D. mespiliformis have been reported to have some pharmacological effects in in vivo studies and were not toxic to the animal models that were utilized. The D. mespiliformis information reported in this review provides researchers with a comprehensive summary of the current research status of this medicinal plant and a guide for further investigation.


Asunto(s)
Antiinfecciosos , Diospyros , Ebenaceae , Plantas Medicinales , Animales , Diospyros/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Fitoquímicos/farmacología , Fitoquímicos/análisis , Etnofarmacología , Fitoterapia
2.
Heliyon ; 7(11): e08425, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34877423

RESUMEN

This work investigated the antifungal, cytotoxic and LPS-induced anti-inflammatory effects of five Vachellia species (V. karroo, V. kosiensis, V. sieberiana, V. tortalis and V. xanthophloea). The antifungal activity of the aqueous-methanolic extracts were performed using the broth dilution method against four non-albicans Candida species (C. glabrata, C. auris, C. tropicalis and C. parapsilosis). The cytotoxic and anti-inflammatory effects of the extracts were evaluated on African green monkey Vero kidney cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay and the 2',7'-dichlorofluorescin diacetate (H2DCF-DA) method. The fourier-transform infrared spectroscopy (FTIR) and Q Exactive plus orbitrap™ Ultra-high-performance liquid chromatography-mass spectrometer (UHPLC-MS) analysis was conducted to evaluate phytochemical constituents of the extracts. The plant extracts selected in this study displayed potency against the Candida species tested, with MIC values ≤0.62 mg/mL for V. karroo, V. kosiensis and V. xanthophloea. A dose-dependent cell viability was observed on Vero cells with all extracts showing LC50 values >20 µg/mL. Extracts tested at 10 µg/mL elicited a significant decrease in lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) in Vero cells with V. sieberiana, V. tortilis, V. karroo, V. kosiensis and V. xanthophloea displaying inhibitory percentages of 35%, 32%, 55%, 52% and 49%, respectively. Characterisation of functional groups representing compounds in the extracts demonstrated the presence of different classes of compounds of the aliphatic, sugar and aromatic types. The Q Exactive plus orbitrap™ mass spectrometer enabled tentative identification of three major compounds in the extracts, including epigallocatechin, methyl gallate and quercetin amongst others. Based on the mass spectrometer results, it is postulated that quercetin found mostly in active extracts of V. karroo, V. xanthophloea, and V. kosiensis may be responsible for the observed antifungal and anti-inflammatory activity. This data demonstrates that the Vachellia species that were investigated could potentially be promising candidates for the management of fungal infections and related inflammation.

3.
Molecules ; 26(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34684798

RESUMEN

The genus Vachellia, previously known as Acacia, belongs to the family Fabaceae, subfamily Leguminosae, which are flowering plants, commonly known as thorn trees. They are traditionally used medicinally in various countries including South Africa for the treatment of ailments such as fever, sore throat, Tuberculosis, convulsions and as sedatives. The aim of this study was to determine biochemical variations in five Vachellia species and correlate their metabolite profiles to antioxidant activity using a chemometric approach. The antioxidant activity of five Vachellia aqueous-methanolic extracts were analyzed using three methods: 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+) analysis and the ferric reducing antioxidant power (FRAP) assay by means of serial dilution and bioautography with the thin-layer chromatography (TLC) method. Amongst the Vachellia extracts tested, V. karroo, V. kosiensis and V. xanthophloea demonstrated the highest DPPH, ABTS+ and FRAP inhibitory activity. The antioxidant activities of DPPH were higher than those obtained by ABTS+, although these values varied among the Vachellia species. Proton nuclear magnetic resonance (1H NMR), coupled with multivariate statistical modeling tools such as principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA), were performed to profile metabolites responsible for the observed activity. The OPLS-DA categorized the five Vachellia species, separating them into two groups, with V. karroo, V. kosiensis and V. xanthophloea demonstrating significantly higher radical scavenging activity than V. tortilis and V. sieberiana, which clustered together to form another group with lower radical scavenging activity. Annotation of metabolites was carried out using the ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-qTOF-MS), and it tentatively identified 23 metabolites of significance, including epigallocatechin (m/z = 305.0659), methyl gallate (m/z = 183.0294) and quercetin (m/z = 301.0358), amongst others. These results elucidated the metabolites that separated the Vachellia species from each other and demonstrated their possible free radical scavenging activities.


Asunto(s)
Acacia/metabolismo , Antioxidantes/metabolismo , Fabaceae/metabolismo , Acacia/química , Acacia/clasificación , Antioxidantes/química , Productos Biológicos/química , Productos Biológicos/metabolismo , Fabaceae/química , Fabaceae/clasificación , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/metabolismo , Espectroscopía de Resonancia Magnética , Metaboloma , Metabolómica , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Plantas Medicinales/química , Plantas Medicinales/clasificación , Plantas Medicinales/metabolismo , Sudáfrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA