Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biol Trace Elem Res ; 202(1): 319-331, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37020163

RESUMEN

Perfluoro octane sulfonate (PFOS) and cadmium (Cd) are toxic elements in the environment. As a micronutrient trace element, selenium (Se) can mitigate the adverse effects induced by PFOS and Cd. However, few studies have examined the correlation between Se, PFOS and Cd in fish. The present study focused on the antagonistic effects of Se on PFOS+Cd-induced accumulation in the liver of zebrafish. The fish was exposed to PFOS (0.08mg/L), Cd (1mg/L), PFOS+ Cd (0.08 mg/L PFOS+1 mg/L Cd), L-Se (0.07mg/L Sodium selenite +0.08mg/L PFOS+1mg/L Cd), M-Se (0.35mg/L Sodium selenite + 0.08mg/L PFOS+ 1 mg/L Cd), H-Se (1.75 mg/L Sodium selenite + 0.08 mg/L PFOS+ 1mg/L Cd) for 14d. The addition of selenium to fish exposed to PFOS and Cd has been found to have significant positive effects. Specifically, selenium treatments can alleviate the adverse effects of PFOS and Cd on fish growth, with a 23.10% improvement observed with the addition of T6 compared to T4. In addition, selenium can alleviate the negative effects of PFOS and Cd on antioxidant enzymes in zebrafish liver, thus reducing the liver toxicity caused by PFOS and Cd. Overall, the supplementation of selenium can reduce the health risks to fish and mitigate the injuries caused by PFOS and Cd in zebrafish.


Asunto(s)
Selenio , Oligoelementos , Animales , Pez Cebra , Selenio/farmacología , Cadmio/toxicidad , Selenito de Sodio/farmacología , Octanos
2.
Environ Res ; 235: 116640, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37453505

RESUMEN

Multi-metals/metalloids contaminated soil has received extensive attention because of their adverse health effects on the safety of the food chain and environmental health. In order to provide additional insight and aid in mitigating environmental risks, a pot experiment was directed to assess the impacts of biochars derived from rice straw (BC), and modified biochars i-e., hydroxyapatite modified (HAP-BC) and oxidized biochars (Ox-BC) on the redistribution, phytoavailability and bioavailability of phosphorus (P), lead (Pb), and Arsenic (As), as well as their effects on the growth of maize (Zea mays L.) in a Lead (Pb)/Arsenic (As) contaminated soil. The results showed that HAP-BC increased the soil total and available P, compared with raw biochar and control treatment. HAP-BC improved soil properties by elevating soil pH and electric conductivity (EC). The Hedley fractionation scheme revealed that HAP-BC enhanced the labile and moderately labile P species in soil. Both HAP-BC and Ox-BC assisted in the P build-up in plant roots and shoots. The BCR (European Community Bureau of Reference) sequential extraction data for Pb and As in soil showed the pronounced effects of HAP-BC towards the transformation of labile Pb and As forms into more stable species. Compared with control, HAP-BC significantly (P ≤ 0.05) decreased the DTPA-extractable Pb and As by 55% and 28%, respectively, subsequently, resulting in reduced Pb and As plant uptakes. HAP-BC application increased the plant fresh and dry root/shoot biomass by 239%, 72%, 222% and 190%, respectively. The Pb/As immobilization by HAP-BC was mainly driven by precipitation, ion exchange and surface complexation mechanisms in soil. In general, HAP-BC application indicated a great capability to be employed as an effective alternative soil amendment for improving P acquisition in soil, simultaneously immobilizing Pb and As in the soil-plant systems.


Asunto(s)
Arsénico , Contaminantes del Suelo , Plomo , Fósforo , Durapatita , Contaminantes del Suelo/análisis , Cadmio/análisis , Suelo/química , Zea mays
3.
Environ Pollut ; 306: 119375, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35500717

RESUMEN

The ever-increasing industrial activities over the decades have generated high toxic metals such as chromium (Cr) that hampers plant growth and development. To counter Cr-toxicity, plants have evolved complex defensive systems including hormonal crosstalk with various signaling pathways. 24-epibrassinolide (24-EBR) lowers oxidative stress and alleviates Cr(VI)-toxicity in plants. In this study, the concealed BR-mediated influences on Cr(VI)-stress tolerance were explored by transcriptome analysis in the Capsicum annuum. Results revealed a linkage between plant development under Cr(VI)-stress and the mitigating effect of 24-epibrassinolide and brassinazole. Growth inhibition, chlorophyll degradation, and a significant rise of malondialdehyde (MDA) were observed after 40 mg/L Cr(VI) treatment in Brz supplemented seedlings, whereas 24-EBR supplemented seedlings exhibited commendatory effect. Comparative transcriptome analysis showed that the expression levels of 6687 genes changed (3846 up-regulated and 2841 downregulated) under Cr(VI)-stress with Brz supplementation. Whereas the expression levels of only 1872 genes changed under Cr(VI)-stress with 24-EBR supplementation (1223 up-regulated and 649 downregulated). The functional categories of the differentially expressed genes (DEGs) by gene ontology (GO) revealed that drug transport, defense responses, and drug catabolic process were the considerable enrichments between 24-EBR and Brz supplemented seedlings under Cr(VI)-stress. Furthermore, auxin signaling, glutathione metabolism, ABC transporters, MAPK pathway, and 36 heavy metal-related genes were significantly differentially expressed components between Cr(VI)-stress, 24-EBR, and Brz supplemented seedlings. Overall, our data demonstrate that employing 24-EBR can commendably act as a growth stimulant in plants subjected to Cr(VI)-stress by modulating the physiological and defense regulatory system.


Asunto(s)
Cromo , Transcriptoma , Brasinoesteroides , Cromo/metabolismo , Cromo/toxicidad , Perfilación de la Expresión Génica , Plantones/metabolismo , Esteroides Heterocíclicos
4.
Sci Total Environ ; 826: 154043, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35202685

RESUMEN

Fishpond sediments are rich in organic carbon and nutrients; thus, they can be used as potential fertilizers and soil conditioners. However, sediments can be contaminated with toxic elements (TEs), which have to be immobilized to allow sediment reutilization. Addition of biochars (BCs) to contaminated sediments may enhance their nutrient content and stabilize TEs, which valorize its reutilization. Consequently, this study evaluated the performance of BCs derived from Taraxacum mongolicum Hand-Mazz (TMBC), Tribulus terrestris (TTBC), and rice straw (RSBC) for Cu, Cr, and Zn stabilization and for the enhancement of nutrient content in the fishpond sediments from San Jiang (SJ) and Tan Niu (TN), China. All BCs, particularly TMBC, reduced significantly the average concentrations of Cr, Cu, and Zn in the overlying water (up to 51% for Cr, 71% for Cu, and 68% for Zn) and in the sediments pore water (up to 77% for Cr, 76% for Cu, and 50% for Zn), and also reduced metal leachability (up to 47% for Cr, 60% for Cu, and 62% for Zn), as compared to the control. The acid soluble fraction accounted for the highest portion of the total content of Cr (43-44%), Cu (38-43%), and Zn (42-45%), followed by the reducible, oxidizable, and the residual fraction; this indicates the high potential risk. As compared with the control, TMBC was more effective in reducing the average concentrations of the acid soluble Cr (15-22%), Cu (35-53%), and Zn (21-39%). Added BCs altered the metals acid soluble fraction by shifting it to the oxidizable and residual fractions. Moreover, TMBC improved the macronutrient status in both sediments. This work provides a pathway for TEs remediation of sediments and gives novel insights into the utilization of BC-treated fishpond sediments as fertilizers for crop production.


Asunto(s)
Metales Pesados , Oryza , Carbón Orgánico , China , Monitoreo del Ambiente , Fertilizantes , Sedimentos Geológicos , Metales Pesados/análisis , Agua
5.
Plants (Basel) ; 10(10)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34685784

RESUMEN

Lack of proper infrastructure and the poor economic conditions of rural communities make them dependent on herbal medicines. Thus, there is a need to obtain and conserve the historic and traditional knowledge about the medicinal importance of different plants found in different areas of the world. In this regard, a field study was conducted to document the medicinal importance of local plants commonly used by the inhabitants of very old historic villages in Southern Punjab, Pakistan. In total, 58 plant species were explored, which belonged to 28 taxonomic families, as informed by 200 experienced respondents in the study area. The vernacular name, voucher number, plant parts used, and medicinal values were also documented for each species. Among the documented species, Poaceae remained the most predominant family, followed by Solanaceae and Asteraceae. The local communities were dependent on medicinal plants for daily curing of several ailments, including asthma, common cold, sore throat, fever, cardiovascular diseases, and digestive disorders. Among the reported species, leaves and the whole plant remained the most commonly utilized plant parts, while extracts (38.8%) and pastes (23.9%) were the most popular modes of utilization. Based on the ICF value, the highest value was accounted for wound healing (0.87), followed by skincare, nails, hair, and teeth disorders (0.85). The highest RFC value was represented by Acacia nilotica and Triticum aestivum (0.95 each), followed by Azadirachta indica (0.91). The highest UV was represented by Conyza canadensis and Cuscuta reflexa (0.58 each), followed by Xanthium strumarium (0.37). As far as FL was concerned, the highest value was recorded in the case of Azadirachta indica (93.4%) for blood purification and Acacia nilotica (91.1%) for sexual disorders. In conclusion, the local inhabitants primarily focus on medicinal plants for the treatment of different diseases in the very old historic villages of Southern Punjab, Pakistan. Moreover, there were various plants in the study area that have great ethnobotanical potential to treat various diseases, as revealed through different indices.

6.
Environ Res ; 201: 111518, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34129867

RESUMEN

The exploration and rational design of easily separable and highly efficient sorbents with the sufficient capability of retaining radioactive and toxic uranium U(VI) is paramount. In this study, a hydroxyapatite (HAP) biochar nanocomposite (BR/HAP) was successfully fabricated from rice straw biochar (BR), to be used as a new and efficient adsorbent for removing U(VI) from aqueous solution. Both BR and the BR/HAP composite were characterized via Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS) techniques. Batch test results showed that BR/HAP exhibited remarkably higher adsorption capacity than the raw BR. A pseudo-second order kinetic model thoroughly explained the adsorption kinetics, providing the maximum U(VI) adsorption capacities (qe) of 110.56 mg g-1 (R2 = 0.98) and 428.25 mg g-1 (R2 = 0.99), for BR and BR/HAP, respectively, which was indicative of the rate-limited sorption via diffusion or surface complexation after rapid initial adsorption steps. The Langmuir isotherm model fitted the experimental data to accurately simulate the adsorption of U(VI) onto BR and BR/HAP (R2 = 0.97 and R2 = 0.99). The thermodynamic results showed negative values for ΔG°, clearly indicating that the reaction was spontaneous, as well as positive values for ΔH° (11.04 kJ mol-1 and 28.86 kJ mol-1, respectively) and ΔS° (88.97 kJ mol-1 K-1, and 183.42 kJ mol-1 K-1), making clear the endothermic nature of U(VI) adsorption onto both sorbents, with an increase in randomness at a molecular level. FTIR spectroscopy and XPS spectrum further confirmed that the primary mechanisms were ion exchange with UO22+ and surface complexion by -OH and -COOH. In addition, BR/HAP showed an excellent reusability, making it a promising candidate as a new sorbent for U(VI) removal from wastewater. In view of that, it would be interesting to perform future research to explore practical implications of this sorbent material regarding protection from environmental and public health issues related to that pollutant.


Asunto(s)
Nanocompuestos , Uranio , Adsorción , Carbón Orgánico , Durapatita , Uranio/análisis
7.
Sci Total Environ ; 780: 146617, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34030312

RESUMEN

Water contamination due to radionuclides is considered a crucial environmental issue. In this study, Tribulus terrestris plant biomass was used as a precursor for obtaining biochar (BC), that was further modified by two different methods using FeCl3 to obtain two different magnetic biochars. Both (one-step biochar, called 1S-BC, and two-steps biochar, called 2S-BC) were studied to investigate their capability for adsorbing/removing uranium (VI) from aqueous solutions. The U(VI) removal efficacy of both biochars was tested for different values of pH, ionic strength, initial concentration of U(VI) and temperature. Experimental adsorption data fitted well to the Freundlich model (achieving as highest value for adsorption capacity KF = 49.56 mg g-1 (mg L-1)-1/n, R2 = 0.99). Thermodynamic studies revealed that adsorption was endothermic, characterized by inner-sphere complexation, and entropy-driven with a relatively increased randomness in the solid-solution interface. X-ray photoelectron spectroscopy (XPS) revealed that U(VI) sorption took place by surface complexation between U(VI) and oxygen containing functional groups on both biochars. Five consecutive regeneration cycles verified an excellent reusability for 1S-BC. The overall results allow to conclude that the FeCl3 modification of the biochar obtained from Tribulus terrestris plant biomass could give an efficient alternative adsorbent for U(VI) removal in a variety of environmental conditions, promoting protection of the environment and human health, as well as facilitating resource utilization and sustainable management of the materials studied.


Asunto(s)
Tribulus , Uranio , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Humanos , Cinética , Uranio/análisis
8.
J Environ Manage ; 292: 112764, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33984639

RESUMEN

A novel phosphorus (P) modified biochar (PLBC) was produced by pyrolyzing biomass of the dietic herb Taraxacum mongolicum Hand-Mazz (TMHM) and treating it with monopotassium phosphate (KH2PO4). This phosphorous loaded biochar was then assessed as adsorbent for As(III) removal from contaminated water. In the current research, the adsorbent was characterized before and after P loading by means of SEM-EDX, TEM, FTIR and XRD techniques. It was evidenced that the presence of P on the surface of the biochar (BC) could improve its efficiency to remove As(III) from contaminated environments. Adsorption kinetics were evaluated by performing batch-type experiments at varied times and pH values (5, 7 and 9). The kinetic study revealed that a contact time of 24 h was required to attain equilibrium and the experimental data were best fitted to the pseudo-second-order kinetic model (qe = 17.1 mg g-1). In addition, several batch experiments were conducted with varied arsenic concentrations. During the adsorption tests, the maximum adsorption of As(III) was found at pH 5. The adsorption study further showed that compared to BC, PLBC depicted increased removal of As(III) from contaminated solutions. The adsorption experimental data showed the best fit to the Langmuir isotherm model (with R2 = 0.84), with maximum As(III) adsorption capacity reaching 30.76 mg g-1 for PLBC.


Asunto(s)
Arsénico , Taraxacum , Contaminantes Químicos del Agua , Adsorción , Arsénico/análisis , Carbón Orgánico , Concentración de Iones de Hidrógeno , Cinética , Fósforo , Agua
9.
J Food Biochem ; 44(9): e13381, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32696536

RESUMEN

Glycation has been involved in Schiff base reaction lead to hyperglycemia at cellular level. The current study aimed to identify the bioactive compounds from selected folkloric plants for their antiglycation and antioxidant potential. Methanol extracts demonstrated the highest activities, therefore, it was further fractionated using n-hexane, dichloromethane, ethyl acetate, and methanol solvents to isolate the nonpolar compounds from the Hordeum vulgare. Moreover, n-hexane and dichloromethane fractions of H. vulgare demonstrated the best antioxidant (61.58% and 62.89%) and antiglycation activities (72.52% and 61.52%) at 2 mg/ml, respectively. Analytical techniques of LC-MS and GC-MS were employed for identification of bioactive compounds; Biochanin A in dichloromethane (DCM) and Vitamin E in n-hexane fractions. There was a strong correlation between antioxidant and antiglycation activities (r = 0.97 and r = 0.96) of DCM & n-hexane fractions of H. vulgare. Findings of this study established the role of Biochanin A and Vit E from H. vulgare as potent antiglycation agents. PRACTICAL APPLICATIONS: The results of this study confirmed the potential role of Black Barley has involved in the inhibition of protein glycation, which can be the potential treatment to reduce the complications of Diabetic Patients. The Black Barley has a rich source of identified compounds Biochanin A and Vitamin E. We can use this plant as a staple food in curing the severity of diabetes. The other practical approach is to use this plant as an ingredient of different food products. The extraction of identified bioactive compounds from the plant will be a good and cheap source of the treatment.


Asunto(s)
Hordeum , Antioxidantes/farmacología , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Humanos , Extractos Vegetales/farmacología , Espectrometría de Masas en Tándem
10.
Int J Biol Macromol ; 148: 887-897, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31945442

RESUMEN

In this study m-AHLPICS (magnetic Arachis hypogaea leaves powder impregnated into chitosan) was prepared and utilized as an adsorbent to remove U(VI) from aqueous and real polluted wastewater samples. m-AHLPICS was characterized by using the BET, XRD, FTIR, SEM with elemental mapping and magnetization measurements. Different experimental effects such as pH, dose, contact time, and temperature were considered broadly. Chitosan modified magnetic leaf powder (m-AHLPICS) exhibits an excellent adsorption capacity (232.4 ± 5.59 mg/g) towards U(VI) ions at pH 5. Different kinetic models such as pseudo-first-order, and pseudo-second-order models were used to know the kinetic data. Langmuir, Freundlich and D-R isotherms were implemented to know the adsorption behavior. Isothermal information fitted well with Langmuir isotherm. Kinetic data followed by the pseudo-second-order kinetics (with high R2 values, i.e., 0.9954, 0.9985 and 0.9971) and the thermodynamic data demonstrate that U(VI) removal using m-AHLPICS was feasible, and endothermic in nature.


Asunto(s)
Arachis/química , Quitosano/química , Hojas de la Planta/química , Uranio/química , Contaminantes Radiactivos del Agua/química , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Polvos , Análisis Espectral , Temperatura , Termodinámica , Aguas Residuales , Contaminación del Agua , Purificación del Agua
11.
PLoS One ; 14(5): e0216881, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31075143

RESUMEN

The identification of phosphorus (P) fractions is essential for understanding the transformation and availability of P in paddy soils. To investigate the soil P fractions associated with soil properties under long-term fertilization, we selected three fertilization treatments, including no fertilization (CK), chemical fertilizers (NPK) and chemical fertilizers combined with manure (NPKM), from three long-term experiments located in Nanchang (NC), Jinxian (JX) and Ningxiang (NX). The results showed that chemical fertilizers combined with manure (NPKM) significantly (P ≤ 0.05) increased the soil total phosphorus, Olsen P and soil organic matter (SOM) by 2, 3 and 1 times, respectively, compared with the NPK treatment, and by 4, 17 and 2 times, respectively, compared with the CK treatment. NPKM significantly increased the grain yield compared with CK and NPK at all sites. The apparent P balance with NPK was higher in NC and NX but lower in JX compared with NPKM. Hedley fractionation revealed the predominance of most of the organic and inorganic phosphorus (Po and Pi) fractions with long-term fertilization, especially with the NPKM treatment, at all sites. The nonlabile P pool decreased by 14% and 18% whereas the moderately labile P pool proportions increased by 3 and 6 times with the NPK and NPKM treatments, respectively, compared to the CK treatment. The labile P pool showed a significant positive relationship with the SOM, total P and Olsen P contents. The moderately labile P was positively correlated with the total P and Olsen P. A significant positive correlation was observed between soil pH and the nonlabile P pool. Redundancy analysis revealed that the moderately labile P fraction (HCl dil. Pi fraction) was remarkably increased by the NPKM treatment and significantly correlated with the soil pH and total P concentration. The labile P fraction (NaHCO3-Pi) showed a strong relationship with the Olsen P and total P. However, the residual P fraction was negatively correlated with the HCl. dil. Pi fraction. We concluded that NPKM application improved P availability by many folds compared to NPK, which could lead to environmental pollution; therefore, the rate of combined application of manure and chemical fertilizer should be reduced compared to chemical fertilizer inputs to minimize the wastage of resources and environmental P losses.


Asunto(s)
Fertilizantes , Estiércol , Nitrógeno/análisis , Fósforo/análisis , Suelo/química , Agricultura , China
12.
Microsc Res Tech ; 82(5): 550-557, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30677189

RESUMEN

The use of quality control tool for authentication of Jadwar (Delphinium denudatum Wall. ex Hook.f. & Thomson), a folk herbal drug used for the treatment of different ailments, was studied. People face problems of adulteration for this drug at global, regional, national and local levels. Two different plant species are commercially marketed in the Indo-Pak Subcontinent under the same trade name of Jadwar. One is D. denudatum Wall. ex Hook.f. & Thomson and the other is Aconitum heterophyllum Wall. ex Royle. To focus on this problem, a marketable available drug sample of Jadwar was authenticated by using basic microscopy tools (LM) and advanced chemo-taxonomic markers. Authentication, quality and standardization of this drug was achieved using morphology, organoleptography, UV and IR analyses, scanning electron microscopy of pollen and anatomical investigations. The techniques used for authentication marked the clear difference between the studied plants. Microscopic studies, chemotaxonomic investigation and other techniques used in this project provided the basis for the authentication of this species.


Asunto(s)
Aconitum , Microscopía Electrónica de Rastreo/métodos , Microscopía/métodos , Plantas Medicinales/clasificación , Aconitum/anatomía & histología , Aconitum/química , Aconitum/clasificación , Delphinium/anatomía & histología , Delphinium/química , Delphinium/clasificación , Humanos , Plantas Medicinales/anatomía & histología , Plantas Medicinales/química , Control de Calidad , Análisis Espectral
13.
Plant Physiol Biochem ; 132: 345-355, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30257236

RESUMEN

Soil co-contamination with lead (Pb) and cadmium (Cd) is a tenacious risk to crop production globally. The current experiment observed the roles of amendments [biochar (BC), slag (SL), and ferrous manganese ore (FMO)] for enhancing Pb and Cd tolerance in sesame (Sesamum indicum L.). Our results revealed that application of amendments significantly enhanced the nutrient level of sesame seedlings developed under extreme Pb and Cd conditions. The higher Pb and Cd-tolerance in sesame encouraged by amendments might be credited to its capability to restrict Pb and Cd uptake and decreased oxidative damage induced by Pb and Cd that is also demonstrated by lesser production of hydrogen peroxide (H2O2), malondialdehyde (MDA), and reduced electrolyte leakage (EL) in plant biomass. The added amendments relieved Pb and Cd toxicity and improved photosynthetic pigments, soluble protein, and proline content. Not only this amendments also decreased the antioxidant bulk, such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in sesame plants compared to control when exposed to Pb and Cd. Moreover, the added amendments = down-regulated the genes expression which regulate the SOD, POD, and CAT activity in sesame under Pb and Cd-stress. Furthermore, supplementation of amendments to the soil, reduced the bio accessibility (SBET), leachability (TCLP), and mobility (CaCl2) of Pb and Cd. Collectively, our findings conclude that the application of amendments enhanced sesame tolerance to Pb and Cd stress by restricting Pb and Cd accumulation, maintained photosynthetic presentation and dropped oxidative loss through enhanced antioxidant system, thus signifying amendments as an operational stress regulators in modifying Pb and Cd-toxicity that is highly important economically in all crops including sesame.


Asunto(s)
Cadmio/toxicidad , Carbón Orgánico/farmacología , Contaminación Ambiental , Plomo/toxicidad , Sesamum/crecimiento & desarrollo , Sesamum/metabolismo , Suelo/química , Antioxidantes/metabolismo , Biomasa , Cloruro de Calcio/química , Conductividad Eléctrica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Malondialdehído/metabolismo , Fotosíntesis/efectos de los fármacos , Pigmentos Biológicos/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Sesamum/efectos de los fármacos , Sesamum/genética , Contaminantes del Suelo/toxicidad , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Fisiológico/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA