Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
3 Biotech ; 11(10): 450, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34631351

RESUMEN

Plant-associated bacteria play an important role in the enhancement of plant growth and productivity. Gluconacetobacter azotocaptans is an exceptional bacterium considering that till today it has been isolated and reported only from Mexico and Canada. It is a plant growth-promoting bacterium and can be used as biofertilizer for different crops and vegetables. The objective of the current study was to evaluate the inoculation effect of Gluconacetobacter azotocaptans DS1, Pseudomonas putida CQ179, Azosprillium zeae N7, Azosprillium brasilense N8, and Azosprillium canadense DS2, on the growth of vegetables including cucumber, sweet pepper, radish, and tomato. All strains increased the vegetables' growth; however, G. azotocaptans DS1 showed better results as compared to other inoculated and control plants and significantly increased the plant biomass of all vegetables. Therefore, the whole genome sequence of G. azotocaptans DS1 was analyzed to predict genes involved in plant growth promotion, secondary metabolism, antibiotics resistance, and bioremediation of heavy metals. Results of genome analysis revealed that G. azotocaptans DS1 has a circular chromosome with a size of 4.3 Mbp and total 3898 protein-coding sequences. Based on functional analysis, genes for nitrogen fixation, phosphate solubilization, indole acetic acid, phenazine, siderophore production, antibiotic resistance, and bioremediation of heavy metals including copper, zinc, cobalt, and cadmium were identified. Collectively, our findings indicated that G. azotocaptans DS1 can be used as a biofertilizer and biocontrol agent for growth enhancement of different crops and vegetables. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02996-1.

2.
J Sci Food Agric ; 101(15): 6248-6257, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33937995

RESUMEN

BACKGROUND: Fungal contamination is a major cause of food spoilage. There is an urgent need to find and characterize natural preservatives. This study evaluates the prevalence of fungi in tomatoes and their control by using essential oil (EO) from sweet orange peel. Essential oils were extracted from dried and fresh sweet orange peels by using n-hexane and ethanol as extraction solvents. Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS) analyses were performed to identify the chemical composition of the EO. A combination of chitosan (CS) and EO was used to control the fungal decay of tomatoes inoculated with Aspergillus niger and Penicillium citrinum. RESULTS: Tomatoes obtained from local markets and supermarkets showed a high prevalence of Aspergillus and Penicillium spp. Essential oils extracted by ethanol from dried peels showed complete inhibition of A. niger and P. citrinum and hyphal degradation at a minimum inhibitory concentration (MIC) of 100 µL mL-1 . The combination of EO with chitosan (2%) as a coating, effectively controlled the fungal decay of tomatoes until the eighth day of storage at 25 °C. CONCLUSION: Due to their edible nature, and their antifungal and preservative potential, EO- and CS-based coatings can be used to extend the shelf life of tomatoes and other agriculture commodities. Essential oil- and CS-based coating can be used as alternative to synthetic preservatives, which are associated with various health hazards. © 2021 Society of Chemical Industry.


Asunto(s)
Quitosano/farmacología , Citrus sinensis/química , Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Frutas/química , Hongos/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Solanum lycopersicum/microbiología , Conservantes de Alimentos/química , Frutas/microbiología , Hongos/crecimiento & desarrollo , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química
3.
Microbiol Res ; 205: 107-117, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28942836

RESUMEN

Biofertilizers are usually carrier-based inoculants containing beneficial microorganisms. Incorporation of microorganisms in carrier material enables easy-handling, long-term storage and high effectiveness of biofertilizers. Objective of the present study was to assess enriched biogas sludge and soil as biofertilizer carriers on growth and yield of wheat. Six phosphate solubilizing strains were used in this study. Three phosphate solubilizing strains, 77-NS2 (Bacillus endophyticus), 77-CS-S1 (Bacillus sphaericus) and 77-NS5 (Enterobacter aerogenes) were isolated from the rhizosphere of sugarcane, two strains, PSB5 (Bacillus safensis) and PSB12 (Bacillus megaterium) from the rhizosphere of wheat and one halophilic phosphate solubilizing strain AT2RP3 (Virgibacillus sp.) from the rhizosphere of Atriplex amnicola, were used as bioinoculants. Phosphate solubilization ability of these strains was checked in vitro in Pikovskaya medium, containing rock phosphate (RP) as insoluble P source, individually supplemented with three different carbon sources, i.e., glucose, sucrose and maltose. Maximum phosphate solubilization; 305.6µg/ml, 217.2µg/ml and 148.1µg/ml was observed in Bacillus strain PSB12 in Pikovskaya medium containing sucrose, maltose and glucose respectively. A field experiment and pot experiments in climate control room were conducted to study the effects of biogas sludge and enriched soil based phosphorous biofertilizers on growth of wheat. Bacillus strain PSB12 significantly increased root and shoot dry weights and lengths using biogas sludge as carrier material in climate control room experiments. While in field conditions, significant increase in root and shoot dry weights, lengths and seed weights was seen by PSB12 and PSB5 (Bacillus) and Enterobacter strain 77-NS5 using biogas sludge as carrier. PSB12 also significantly increased both root and shoot dry weights and lengths in field conditions when used as enriched soil based inoculum. These results indicated that bacterial isolates having plant beneficial traits such as P solubilization are more promising candidates as biofertilizer when used with carrier materials.


Asunto(s)
Bacillus/metabolismo , Enterobacter/metabolismo , Fertilizantes , Fosfatos/metabolismo , Triticum/crecimiento & desarrollo , Triticum/microbiología , Atriplex/microbiología , Bacillus/clasificación , Bacillus/aislamiento & purificación , Biocombustibles , Enterobacter/clasificación , Enterobacter/aislamiento & purificación , Ácidos Indolacéticos/metabolismo , Fósforo/metabolismo , Filogenia , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Rizosfera , Saccharum , Semillas/crecimiento & desarrollo , Aguas del Alcantarillado/microbiología , Suelo/química , Microbiología del Suelo , Solubilidad
4.
FEMS Microbiol Ecol ; 93(3)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27986826

RESUMEN

Pathogenic microorganisms and insects affecting plant health are a major and chronic threat to food production and the ecosystem worldwide. As agricultural production has intensified over the years, the use of agrochemicals has in turn increased. However, this extensive usage has had several detrimental effects, with a pervasive environmental impact and the emergence of pathogen resistance. In addition, there is an increasing tendency among consumers to give preference to pesticide-free food products. Biological control, through the employment of plant growth-promoting rhizobacteria (PGPR), is therefore considered a possible route to the reduction, even the elimination, of the use of agrochemicals. PGPR exert their beneficial influence by a multitude of mechanisms, often involving antibiotics and proteins, to defend the host plant against pathogens. To date, these key metabolites have been uncovered only by systematic investigation or by serendipity; their discovery has nevertheless been propelled by the genomic revolution of recent years, as increasing numbers of genomic studies have been integrated into this field, facilitating a holistic view of this topic and the rapid identification of ecologically important metabolites. This review surveys the highlights and advances of genome-driven compound and protein discovery in the field of bacterial PGPR strains, and aims to advocate for the benefits of this strategy.


Asunto(s)
Agricultura , Genoma , Rhizobiaceae/genética , Desarrollo de la Planta , Microbiología del Suelo
5.
Front Microbiol ; 8: 2593, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29312265

RESUMEN

Zinc is an imperative micronutrient required for optimum plant growth. Zinc solubilizing bacteria are potential alternatives for zinc supplementation and convert applied inorganic zinc to available forms. This study was conducted to screen zinc solubilizing rhizobacteria isolated from wheat and sugarcane, and to analyze their effect on wheat growth and development. Fourteen exo-polysaccharides producing bacterial isolates of wheat were identified and characterized biochemically as well as on the basis of 16S rRNA gene sequences. Along these, 10 identified sugarcane isolates were also screened for zinc solubilizing ability on five different insoluble zinc sources. Out of 24, five strains, i.e., EPS 1 (Pseudomonas fragi), EPS 6 (Pantoea dispersa), EPS 13 (Pantoea agglomerans), PBS 2 (E. cloacae) and LHRW1 (Rhizobium sp.) were selected (based on their zinc solubilizing and PGP activities) for pot scale plant experiments. ZnCO3 was used as zinc source and wheat seedlings were inoculated with these five strains, individually, to assess their effect on plant growth and development. The effect on plants was analyzed based on growth parameters and quantifying zinc content of shoot, root and grains using atomic absorption spectroscopy. Plant experiment was performed in two sets. For first set of plant experiments (harvested after 1 month), maximum shoot and root dry weights and shoot lengths were noted for the plants inoculated with Rhizobium sp. (LHRW1) while E. cloacae (PBS 2) increased both shoot and root lengths. Highest zinc content was found in shoots of E. cloacae (PBS 2) and in roots of P. agglomerans (EPS 13) followed by zinc supplemented control. For second set of plant experiment, when plants were harvested after three months, Pantoea dispersa (EPS 6), P. agglomerans (EPS 13) and E. cloacae (PBS 2) significantly increased shoot dry weights. However, significant increase in root dry weights and maximum zinc content was recorded for Pseudomonas fragi (EPS 1) inoculated plants, isolated from wheat rhizosphere. While maximum zinc content for roots was quantified in the control plants indicating the plant's inability to transport zinc to grains, supporting accelerated bioavailability of zinc to plant grains with zinc solubilizing rhizobacteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA