Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuromolecular Med ; 23(3): 344-347, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33486699

RESUMEN

Following traumatic brain injury (TBI), increased production of reactive oxygen species (ROS) and the ensuing oxidative stress promotes the secondary brain damage that encompasses both grey matter and white matter. As this contributes to the long-term neurological deficits, decreasing oxidative stress during the acute period of TBI is beneficial. While NADPH oxidase (NOX2) is the major producer of ROS, transcription factor Nrf2 that induces antioxidant enzymes promotes efficient ROS disposal. We recently showed that treatment with an antioxidant drug combo of apocynin (NOX2 inhibitor) and TBHQ (Nrf2 activator) protects the grey matter in adult mice subjected to TBI. We currently show that this antioxidant combo therapy given at 2 h and 24 h after TBI also protects white matter in mouse brain. Thus, the better functional outcomes after TBI in the combo therapy treated mice might be due to a combination of sparing both grey matter and white matter. Hence, the antioxidant combo we tested is a potent therapeutic option for translation in future.


Asunto(s)
Acetofenonas/uso terapéutico , Antioxidantes/uso terapéutico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Hidroquinonas/uso terapéutico , Sustancia Blanca/efectos de los fármacos , Acetofenonas/administración & dosificación , Animales , Antioxidantes/administración & dosificación , Lesiones Traumáticas del Encéfalo/patología , Esquema de Medicación , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada , Sustancia Gris/efectos de los fármacos , Sustancia Gris/patología , Hidroquinonas/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasa 2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/agonistas , Estrés Oxidativo/efectos de los fármacos , Distribución Aleatoria , Sustancia Blanca/patología
2.
Int J Biol Sci ; 12(6): 688-700, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27194946

RESUMEN

Mitochondrial dysfunction and oxidative stress are the major events that lead to the formation of mitochondrial permeability transition pore (mPTP) during glutamate-induced cytotoxicity and cell death. Coenzyme Q10 (CoQ10) has widely been used for the treatment of mitochondrial disorders and neurodegenerative diseases. Comparing to traditional lipid-soluble CoQ10, water soluble CoQ10 (Ubisol-Q10) has high intracellular and intra-mitochondrial distribution. The aims of the present study are to determine the neuroprotective effects of Ubisol-Q10 on glutamate-induced cell death and to explore its functional mechanisms. HT22 neuronal cells were exposed to glutamate. Cell viability was measured and mitochondrial fragmentation was assessed by mitochondrial imaging. The mPTP opening was determined by mitochondrial membrane potential and calcium retention capacity. The results revealed that the anti-glutamate toxicity effects of Ubisol-Q10 was associated with its ability to block mitochondrial fragmentation, to maintain calcium retention capacity and mitochondrial membrane potential, and to prevent mPTP formation, AIF release, and DNA fragmentation. We concluded that Ubisol-Q10 protects cells from glutamate toxicity by preserving the integrity of mitochondrial structure and function. Therefore, adequate CoQ10 supplementation may be beneficial in preventing cerebral stroke and other disorders that involve mitochondrial dysfunction.


Asunto(s)
Muerte Celular/efectos de los fármacos , Ácido Glutámico/toxicidad , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos
3.
PLoS One ; 7(10): e47910, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23110128

RESUMEN

Supplementation of selenium has been shown to protect cells against free radical mediated cell damage. The objectives of this study are to examine whether supplementation of selenium stimulates mitochondrial biogenesis signaling pathways and whether selenium enhances mitochondrial functional performance. Murine hippocampal neuronal HT22 cells were treated with sodium selenite for 24 hours. Mitochondrial biogenesis markers, mitochondrial respiratory rate and activities of mitochondrial electron transport chain complexes were measured and compared to non-treated cells. The results revealed that treatment of selenium to the HT22 cells elevated the levels of nuclear mitochondrial biogenesis regulators PGC-1α and NRF1, as well as mitochondrial proteins cytochrome c and cytochrome c oxidase IV (COX IV). These effects are associated with phosphorylation of Akt and cAMP response element-binding (CREB). Supplementation of selenium significantly increased mitochondrial respiration and improved the activities of mitochondrial respiratory complexes. We conclude that selenium activates mitochondrial biogenesis signaling pathway and improves mitochondrial function. These effects may be associated with modulation of AKT-CREB pathway.


Asunto(s)
Hipocampo/citología , Mitocondrias/efectos de los fármacos , Recambio Mitocondrial/efectos de los fármacos , Neuronas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Selenito de Sodio/farmacología , Animales , Línea Celular , Citocromos c/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Ratones , Mitocondrias/fisiología , Recambio Mitocondrial/fisiología , Neuronas/fisiología , Factor Nuclear 1 de Respiración/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Transducción de Señal/fisiología , Transactivadores/metabolismo , Factores de Transcripción
4.
BMC Neurosci ; 13: 79, 2012 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-22776356

RESUMEN

BACKGROUND: Mitochondrial dysfunction is one of the major events responsible for activation of neuronal cell death pathways during cerebral ischemia. Trace element selenium has been shown to protect neurons in various diseases conditions. Present study is conducted to demonstrate that selenium preserves mitochondrial functional performance, activates mitochondrial biogenesis and prevents hypoxic/ischemic cell damage. RESULTS: The study conducted on HT22 cells exposed to glutamate or hypoxia and mice subjected to 60-min focal cerebral ischemia revealed that selenium (100 nM) pretreatment (24 h) significantly attenuated cell death induced by either glutamate toxicity or hypoxia. The protective effects were associated with reduction of glutamate and hypoxia-induced ROS production and alleviation of hypoxia-induced suppression of mitochondrial respiratory complex activities. The animal studies demonstrated that selenite pretreatment (0.2 mg/kg i.p. once a day for 7 days) ameliorated cerebral infarct volume and reduced DNA oxidation. Furthermore, selenite increased protein levels of peroxisome proliferator-activated receptor-γ coactivator 1alpha (PGC-1α) and nuclear respiratory factor 1 (NRF1), two key nuclear factors that regulate mitochondrial biogenesis. Finally, selenite normalized the ischemia-induced activation of Beclin 1 and microtubule-associated protein 1 light chain 3-II (LC3-II), markers for autophagy. CONCLUSIONS: These results suggest that selenium protects neurons against hypoxic/ischemic damage by reducing oxidative stress, restoring mitochondrial functional activities and stimulating mitochondrial biogenesis.


Asunto(s)
Antioxidantes/uso terapéutico , Infarto Encefálico/prevención & control , Mitocondrias/efectos de los fármacos , Recambio Mitocondrial/efectos de los fármacos , Selenio/uso terapéutico , Análisis de Varianza , Animales , Antioxidantes/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/efectos de los fármacos , Beclina-1 , Infarto Encefálico/etiología , Isquemia Encefálica/complicaciones , Muerte Celular/efectos de los fármacos , Línea Celular Transformada , Daño del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Fluoresceínas , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/toxicidad , Histonas/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Proteínas de Microtúbulos/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Compuestos Orgánicos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Especies Reactivas de Oxígeno/metabolismo , Selenio/farmacología , Factores de Tiempo , Transactivadores/metabolismo , Factores de Transcripción
5.
PLoS One ; 7(6): e39382, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22724008

RESUMEN

Glutamate-induced cytotoxicity is partially mediated by enhanced oxidative stress. The objectives of the present study are to determine the effects of glutamate on mitochondrial membrane potential, oxygen consumption, mitochondrial dynamics and autophagy regulating factors and to explore the protective effects of selenium against glutamate cytotoxicity in murine neuronal HT22 cells. Our results demonstrated that glutamate resulted in cell death in a dose-dependent manner and supplementation of 100 nM sodium selenite prevented the detrimental effects of glutamate on cell survival. The glutamate induced cytotoxicity was associated with mitochondrial hyperpolarization, increased ROS production and enhanced oxygen consumption. Selenium reversed these alterations. Furthermore, glutamate increased the levels of mitochondrial fission protein markers pDrp1 and Fis1 and caused increase in mitochondrial fragmentation. Selenium corrected the glutamate-caused mitochondrial dynamic imbalance and reduced the number of cells with fragmented mitochondria. Finally, glutamate activated autophagy markers Beclin 1 and LC3-II, while selenium prevented the activation. These results suggest that glutamate targets the mitochondria and selenium supplementation within physiological concentration is capable of preventing the detrimental effects of glutamate on the mitochondria. Therefore, adequate selenium supplementation may be an efficient strategy to prevent the detrimental glutamate toxicity and further studies are warranted to define the therapeutic potentials of selenium in animal disease models and in human.


Asunto(s)
Autofagia/efectos de los fármacos , Ácido Glutámico/toxicidad , Dinámicas Mitocondriales/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Selenio/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Línea Celular , Supervivencia Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA