Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Tradit Complement Med ; 13(2): 119-127, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36970457

RESUMEN

Background and aim: Obesity is one of the complications of sedentary lifestyle and high-calorie food intake which become a global problem. Thermogenesis is a novel way to promote anti-obesity by consuming energy as heat rather than storing it as triacylglycerols. Over the last decade, growing evidence has identified the gut microbiota as a potential factor in the pathophysiology of obesity. Calebin A is a non-curcuminoid novel compound derived from the rhizome of medicinal turmeric with putative anti-obesity effects. However, its ability on promoting thermogenesis and modulating gut microbiota remain unclear. Experimental procedure: C57BL/6J mice were fed either normal diet or high-fat diet (HFD) supplement with calebin A (0.1 and 0.5%) diet for 12 weeks. The composition of the gut microbiota was assessed by analyzing 16S rRNA gene sequences. Results and conclusion: Mice treated with calebin A shows a remarkable alteration in microbiota composition compared with that of normal diet-fed or HFD-fed mice and is characterized by an enrichment of Akkermansia, Butyricicoccus, Ruminiclostridium_9, and unidentified_Ruminococcaceae. We also explored that calebin A reduce the weight and blood sugar of mice that are induced by HFD, and show a dose-dependent reaction. Moreover, calebin A decreases the weight of white, beige, and brown adipose tissue, and also restores liver weight. In cold exposure experiments, calebin A can better maintain rectal temperature through thermogenesis. In summary, calebin A has a good thermogenesis function and is effective in anti-obesity. It can be used as a novel gut microbiota modulator to prevent HFD-induced obesity.

2.
Molecules ; 26(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33926142

RESUMEN

In this novel study, we isolated 28 compounds from the leaves of Aquilaria sinensis (Lour.) Gilg based on a bioassay-guided procedure and also discovered the possible matrix metalloprotease 2 (MMP-2) and 9 (MMP-9) modulatory effect of pheophorbide A (PA). To evaluate the regulatory activity on MMP-2 and MMP-9, the HT-1080 human fibrosarcoma cells were treated with various concentrations of extracted materials and isolated compounds. PA was extracted by methanol from the leaves of A. sinensis and separated from the fraction of the partitioned ethyl acetate layer. PA is believed to be an active component for MMP expression since it exhibited significant stimulation on MMP-2 and proMMP-9 activity. When treating with 50 µM of PA, the expression of MMP-2 and MMP-9 were increased 1.9-fold and 2.3-fold, respectively. PA also exhibited no cytotoxicity against HT-1080 cells when the cell viability was monitored. Furthermore, no significant MMP activity was observed when five PA analogues were evaluated. This study is the first to demonstrate that C-17 of PA is the deciding factor in determining the bioactivity of the compound. The MMP-2 and proMMP-9 modulatory activity of PA indicate its potential applications for reducing scar formation and comparative medical purposes.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Hojas de la Planta/química , Thymelaeaceae/química , Línea Celular Tumoral , Humanos , Estructura Molecular , Fitoquímicos/química , Extractos Vegetales/química
3.
Molecules ; 23(3)2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29518973

RESUMEN

Chamaecyparis formosensis is Taiwan's most representative tree, and has high economic value. To date, only a few active chemical constituents have been reported for C. formosensis. In this study, 37 secondary metabolites, including three new compounds (1-3), were extracted from the leaves of C. formosensis. The compounds isolated from the ethyl acetate layer were used at different concentrations to treat HT-1080 human fibrosarcoma cells and to evaluate their effects on matrix metalloprotease 2 (MMP-2) and 9 (MMP-9) expression. Based on extensive analysis of data from high-resolution mass spectrometry (HR-MS) as well as nuclear magnetic resonance (NMR), infrared (IR), and ultraviolet (UV) spectroscopy, the new compounds were identified as 11,12-dihydroxyisodaucenoic acid (1), 12-hydroxyisodaucenoic acid (2), and 1-oxo-2α,3ß-dihydroxytotarol (3). Known compounds 4-37 were identified by comparing their spectroscopic data with data reported in the literature. Biological activity tests by gelatin zymographic analysis revealed that seven compounds, including new compound 2, have no cytotoxic effect on HT-1080 cells and were found to increase MMP-2 or MMP-9 expression by 1.25- to 1.59-fold at lower concentrations of 10-50 µM. These naturally derived regulatory compounds could potentially serve as a novel pharmaceutical basis for medical purposes.


Asunto(s)
Chamaecyparis/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Terpenos/química , Terpenos/farmacología , Línea Celular , Activación Enzimática , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Estructura Molecular , Extractos Vegetales/aislamiento & purificación , Terpenos/aislamiento & purificación
4.
Artículo en Inglés | MEDLINE | ID: mdl-23401710

RESUMEN

From fermented Taiwan foods, we have isolated numerous lactic acid bacteria (LAB) of plant origin and investigated their biological activities. This study aimed to investigate the immunomodulatory effect and mechanism of Lactococcus lactis A17 (A17), isolated from Taiwan fermented cabbage, on ovalbumin (OVA)-sensitized mice. Human peripheral blood mononuclear cells were used to verify immune responses of A17 by IFN-γ production. Live (A17-A) and heat-killed A17 (A17-H) were orally administered to OVA-sensitized BALB/c mice to investigate their effects on immunoglobulin (Ig) and cytokine production. The mRNA expression of Toll-like receptors (TLR) and nucleotide binding oligomerization domain (NOD)-like protein receptors in spleen cells was analyzed by real-time RT-PCR. Both live and heat-killed A17 modulate OVA-induced allergic effects. B-cell response was modulated by diminishing IgE production and raising OVA-specific IgG2a production, while T-cell response was modulated by increasing IFN-γ production and decreasing IL-4 production. The mRNA expression of NOD-1, NOD-2, and TLR-4 was down-regulated by A17 as well. This is the first report to describe a naïve Lactococcus lactis A17 strain as a promising candidate for prophylactic and therapeutic treatments of allergic diseases via oral administration. Our results suggest the ameliorative effects of A17 may be caused by modulating NOD-1 NOD-2, and TLR-4 expression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA