RESUMEN
Shen-Wu-Yi-Shen tablets (SWYST) is a traditional Chinese medicine prescription used for treating chronic kidney disease (CKD). This study aims to characterize the constituents in SWYST and evaluate the quality based on the quantification of multiple bioactive components. SWYST samples were analyzed with ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and a data-processing strategy. As a result, 215 compounds in SWYST were unambiguously identified or tentatively characterized, including 14 potential new compounds. Meanwhile, strategies based on characteristic fragments for rapid identification were summarized, indicating that the qualitative method is accurate and feasible. Notably, the glucose esters of laccaic acid D-type anthraquinone were first found and their fragmentation patterns were described by comparing that of O-glycoside isomers. Besides, based on comparisons of the cleavage ways of mono-acyl glucose with different acyl groups or acylation sites, differences in fragmentation pathways between 1,2-di-O-acyl glucose and 1,6-di-O-acyl glucose were proposed for the first time and verified by reference substances. In addition, a validated UPLC-DAD was established for the determination of 11 major bioactive components related to treatment of CKD (albiflorin, paeoniflorin, 2,3,5,4'-tetrahydroxy-stilbene-2-O-ß-d-glucoside (TSG), 1-O-galloyl-2-O-cinnamoyl-ß-d-glucose, emodin-8-O-ß-d-glucoside, chrysophanol-O-ß-d-glucoside, aloe-emodin, rhein, emodin, chrysophanol and physcion). Moreover, TSG and 1-O-galloyl-2-O-cinnamoyl-ß-d-glucose were found as the quality markers related to the origins of SWYST based on multivariate statistical analysis. Conclusively, the findings in this work provide a feasible reference for further studies on quality research and mechanisms of action in treating CKD.
Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Espectrometría de Masas en Tándem/métodos , Análisis Multivariante , Comprimidos/química , Reproducibilidad de los Resultados , Antraquinonas/análisis , Antraquinonas/química , Modelos LinealesRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Shen-Wu-Yi-Shen tablets (SWYST), a Chinese patent medicine consisting of 12 herbal medicines, was formulated by a famous TCM nephrologist, Zou Yunxiang. It is clinically used to improve the symptoms of nausea, vomiting, poor appetite, dry mouth and throat, and dry stool in patients with chronic renal failure (CRF) accompanied by qi and yin deficiency, dampness, and turbidity. SWYST can reduce urea nitrogen, blood creatinine, and urinary protein loss, and increase the endogenous creatinine clearance rate. However, little is known about its pharmacokinetics. AIM OF STUDY: To compare the pharmacokinetics of six bioactive components after oral administration of SWYST in normal and adenine-induced CRF rats. MATERIALS AND METHODS: A method based on ultra-performance liquid chromatography coupled with a triple-stage quadrupole mass spectrometer (UPLC-TSQ-MS/MS) was developed and validated to determine the six bioactive compounds (albiflorin, paeoniflorin, plantagoguanidinic acid, rhein, aloe-emodin, and emodin) in rat plasma. Rat plasma samples were prepared using protein precipitation. Chromatography was performed on an Agilent Eclipse Plus C18 column (3.0 × 50 mm, 1.8 µm) using gradient elution with a mobile phase composed of acetonitrile and water containing 0.1% (v/v) formic acid, while detection was achieved by electrospray ionization MS under the multiple selective reaction monitoring modes. After SWYST administration, rat plasma was collected at different time points, and the pharmacokinetic parameters of six analytes were calculated and analyzed based on the measured plasma concentrations. RESULTS: The UPLC-TSQ-MS/MS method was fully validated for its satisfactory linearity (r ≥ 0.9913), good precisions (RSD <11.5%), and accuracy (RE: -13.4â¼13.1%), as well as acceptable limits in the extraction recoveries, matrix effects, and stability (RSD <15%). In normal rats, the six analytes were rapidly absorbed (Tmax ≤ 2 h), and approximately 80% of their total exposure was eliminated within 10 h. Moreover, in normal rats, the AUC0-t and Cmax of albiflorin, plantagoguanidinic acid, and rhein exhibited linear pharmacokinetics within the dose ranges, while that of paeoniflorin is non-linear. However, in CRF rats, the six analytes exhibited reduced elimination and significantly different AUC or Cmax values. These changes may reflect a decreased renal clearance rate or inhibition of drug-metabolizing enzymes and transporters in the liver and gastrointestinal tract caused by CRF. CONCLUSIONS: A sensitive UPLC-TSQ-MS/MS method was validated and used to investigate the pharmacokinetics of SWYST in normal and CRF rats. This is the first study to investigate the pharmacokinetics of SWYST, and our findings elucidate the causes of their different pharmacokinetic behaviors in CRF rats. Furthermore, the results provide useful information to guide further research on the pharmacokinetic-pharmacodynamic correlation and clinical application of SWYST.
Asunto(s)
Medicamentos Herbarios Chinos , Emodina , Fallo Renal Crónico , Ratas , Animales , Espectrometría de Masas en Tándem/métodos , Ratas Sprague-Dawley , Cromatografía Líquida de Alta Presión/métodos , Creatinina , Fallo Renal Crónico/tratamiento farmacológico , Comprimidos , Administración Oral , Reproducibilidad de los ResultadosRESUMEN
Shen-Wu-Yi-Shen tablet (SWYST), a well-known traditional Chinese medicine prescription (TCMP), has been effectively used for treating chronic kidney disease (CKD) in clinically. However, an in-depth study of in vivo metabolism of SWYST is lacking. In this study, a targeted and non-targeted strategy based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) was developed to screen and characterize SWYST-related xenobiotics in rats. Based on the in-house library, a chemical database of SWYST including 215 constituents was constructed through "find by formula" and further verified by characteristic fragmentations or the literatures. Then the constructed chemical database was applied for the targeted screening of prototypes. As for metabolites, the non-targeted screening was achieved combined the peak picking using the function "find by auto-MS/MS" and peak filtration of the prototypes and endogenous components, while the targeted screening was performed using Metabolite ID according to the possible metabolic reactions. Furthermore, the potential metabolites were preliminarily identified by comparison of the parent compounds or references to the literatures. As a result, 201 exogenous components (87 prototypes and 121 metabolites) were characterized in rats after administration of SWYST, including 55 (17 prototypes and 38 metabolites) in plasma, 151 (52 prototypes and 99 metabolites) in urine, and 121 (74 prototypes and 47 metabolites) in feces. Finally, their possible metabolic pathways were summarized, and the metabolic reactions mainly involved phase I reactions (hydroxylation, deoxygenation, hydrogenation, methylation, oxidation, hydrolysis and esterification) and phase II reactions (glucuronidation and sulfation). The findings of this research reveal the potential active ingredients of SWYST, providing an important material basis for the pharmacokinetics and pharmacodynamics of SWYST.
Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Ratas , Animales , Espectrometría de Masas en Tándem/métodos , Ratas Sprague-Dawley , Medicamentos Herbarios Chinos/análisis , Xenobióticos/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Administración OralRESUMEN
Two new iridoid glycosides, 2'-O-cis-coumaroylgardoside (1), and 6'-O-caffeoylioxide (2), were isolated from the fruit of Gardenia jasminoides. The structures of these compounds were elucidated based on spectroscopic analysis (HR-ESI-MS, NMR) and chemical methods. The anti-inflammatory activities of the isolates were evaluated by measuring their inhibitory effects on PGE2 production in LPS stimulated RAW 264.7 macrophages, compounds 1 and 2 could reduce PGE2 levels in LPS-activated RAW 264.7 macrophages with IC50 values of 121.4 and 83.38 µM, respectively.
Asunto(s)
Antiinflamatorios , Gardenia , Glicósidos Iridoides , Animales , Antiinflamatorios/farmacología , Frutas/química , Gardenia/química , Glicósidos Iridoides/farmacología , Ratones , Extractos Vegetales/farmacología , Células RAW 264.7RESUMEN
Six new monoterpene glycosides, named 6'-O-nicotinoylalbiflorin (1), 4'-O-vanillylalbiflorin (2), paeonidanin L (3), paeoniflorigenin-1-O-ß-d-xyloside (4), 6'-(2-hydroxypropanoyl)-paeoniflorin (5), oxylactiflorin (6), together with 16known ones (7-22) were isolated from the 70% ethanol extract of Paeoniae Radix. Their structures were elucidated based on spectroscopic analysis (1D and 2D NMR, HRESIMS, IR and UV), chemical evidences and comparison with literatures. The inhibitory effects of all the isolates were evaluated against lipopolysaccharide (LPS) stimulated PGE2 production in RAW 264.7 macrophages.
Asunto(s)
Antiinflamatorios/farmacología , Glicósidos/farmacología , Monoterpenos/farmacología , Paeonia/química , Raíces de Plantas/química , Animales , Antiinflamatorios/aislamiento & purificación , China , Medicamentos Herbarios Chinos/farmacología , Glicósidos/aislamiento & purificación , Ratones , Estructura Molecular , Monoterpenos/aislamiento & purificación , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Células RAW 264.7RESUMEN
The flower buds of Lonicera macranthoides (Shan Yin-Hua), represent an important traditional Chinese medicine and food ingredient. A phytochemical investigation of the 70% EtOH extract of the flower buds of L. macranthoides resulted in the isolation of 12 triterpenoids (1-12), including two new ursane-type nortriterpenes, 2α, 24-dihydroxy-23-nor-ursolic acid (1) and 2α, 4α-dihydroxy-23-nor-ursolic acid (2). Their structures were established by multiple spectroscopic methods and comparison with literature data. All isolated compounds were evaluated for their anti-inflammatory effects in LPS-activated RAW264.7 cells. Compounds 1 and 2 exhibited inhibitory effects on iNOS at the concentration of 30 µmol·L-1.
Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Lonicera/química , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Triterpenos/química , Triterpenos/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Medicamentos Herbarios Chinos/química , Etanol/química , Flores/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Estructura Molecular , Óxido Nítrico/metabolismo , Extractos Vegetales/química , Plantas Comestibles/química , Células RAW 264.7 , Ácido UrsólicoRESUMEN
Chlorogenic acids (CGAs), exhibiting health benefits in many foods, also played an important role for their broad bioactive properties in nature. Obtaining more diverse CGAs was helpful to discover their potential edible and medical value. In this study, 11 CGAs, including four new (1-4) and seven known compounds (5-11), were obtained from the flower buds of Lonicera macranthoides Miq.-Hazz. The possible targets of all isolated CGAs were predicted using the ligand-based reverse screening and compound-target network, suggesting that MAO B (monoamine oxidase B) was the primary target of these CGAs. Subsequently, 7 out of 11 CGAs were confirmed to possess inhibitory effects by in vitro assay. The detailed interaction mechanism between compound and MAO B was also announced by molecular docking and molecular dynamics simulation.
Asunto(s)
Ácido Clorogénico/farmacología , Lonicera/química , Inhibidores de la Monoaminooxidasa/farmacología , Animales , China , Ácido Clorogénico/aislamiento & purificación , Flores/química , Masculino , Simulación del Acoplamiento Molecular , Estructura Molecular , Monoaminooxidasa , Inhibidores de la Monoaminooxidasa/aislamiento & purificación , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Ratas WistarRESUMEN
A rare hetero dimeric terpenoid derivative, named japonicaside C, together with five known secoiridoid gloucosides were isolated from the flower buds of Lonicera japonica. The structures of these compounds were established on the basis of spectroscopic analyses. Japonicaside C is the first representative of a novel type of hetero dimeric terpenoid, biogenetically originated from a guaiane-type sesquiterpenoid and a secoiridoid glucoside. Anti-virus activity of the isolated compounds was evaluated in vitro.