Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Dent Res ; 94(5): 690-6, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25691071

RESUMEN

Local anesthesia has made dental treatment more comfortable since 1884, but little is known about associated brain mechanisms. Functional magnetic resonance imaging is a modern neuroimaging tool widely used for investigating human brain activity related to sensory perceptions, including pain. Most brain regions that respond to experimental noxious stimuli have recently been found to react not only to nociception alone, but also to visual, auditory, and other stimuli. Thus, presumed functional attributions have come under scrutiny regarding selective pain processing in the brain. Evidently, innovative approaches are warranted to identify cerebral regions that are nociceptive specific. In this study, we aimed at circumventing known methodological confounders by applying a novel paradigm in 14 volunteers: rather than varying the intensity and thus the salience of painful stimuli, we applied repetitive noxious dental stimuli at constant intensity to the left mandibular canine. During the functional magnetic resonance imaging paradigm, we suppressed the nociceptive barrage by a mental nerve block. Brain activity before and after injection of 4% articaine was compared intraindividually on a group level. Dental pain extinction was observed to correspond to activity reduction in a discrete region of the left posterior insular cortex. These results confirm previous reports demonstrating that direct electrical stimulation of this brain region-but not of others-evokes bodily pain sensations. Hence, our investigation adds further evidence to the notion that the posterior insula plays a unique role in nociceptive processing.


Asunto(s)
Encéfalo/fisiopatología , Odontalgia/tratamiento farmacológico , Adulto , Anestésicos Locales/administración & dosificación , Carticaína/administración & dosificación , Cerebelo/fisiopatología , Corteza Cerebral/fisiopatología , Mentón/inervación , Diente Canino/efectos de los fármacos , Diente Canino/inervación , Estimulación Eléctrica , Giro del Cíngulo/fisiopatología , Hipocampo/fisiopatología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Bloqueo Nervioso/métodos , Vías Nerviosas/fisiopatología , Nocicepción/efectos de los fármacos , Nocicepción/fisiología , Dolor/fisiopatología , Lóbulo Parietal/fisiopatología , Corteza Prefrontal/fisiopatología , Lóbulo Temporal/fisiopatología , Tálamo/fisiopatología , Odontalgia/fisiopatología , Corteza Visual/fisiopatología , Adulto Joven
2.
J Dent Res ; 91(2): 156-60, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22157099

RESUMEN

Identification of brain regions that differentially respond to pain intensity may improve our understanding of trigeminally mediated nociception. This report analyzed cortical responses to painless and painful electrical stimulation of a right human maxillary canine tooth. Functional magnetic resonance images were obtained during the application of five graded stimulus strengths, from below, at, and above the individually determined pain thresholds. Study participants reported each stimulus on a visual rating scale with respect to evoked sensation. Based on hemodynamic responses of all pooled stimuli, a cerebral network was identified that largely corresponds to the known lateral and medial nociceptive system. Further analysis of the five graded stimulus strengths revealed positive linear correlations for the anterior insula bilaterally, the contralateral (left) anterior mid-cingulate, as well as contralateral (left) pregenual cingulate cortices. Cerebral toothache intensity coding on a group level can thus be attributed to specific subregions within the cortical pain network.


Asunto(s)
Encéfalo/fisiología , Umbral del Dolor/fisiología , Odontalgia/fisiopatología , Adulto , Amígdala del Cerebelo/fisiología , Tronco Encefálico/fisiología , Cerebelo/fisiología , Corteza Cerebral/fisiología , Diente Canino/inervación , Imagen Eco-Planar/métodos , Estimulación Eléctrica , Lóbulo Frontal/fisiología , Giro del Cíngulo/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Corteza Motora/fisiología , Nocicepción/fisiología , Dolor Nociceptivo/fisiopatología , Lóbulo Occipital/fisiología , Lóbulo Parietal/fisiología , Putamen/fisiología , Umbral Sensorial/fisiología , Lóbulo Temporal/fisiología , Tálamo/fisiología , Nervio Trigémino/fisiología , Adulto Joven
3.
Diabetologia ; 52(5): 765-75, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19238353

RESUMEN

The protein kinase C (PKC) superfamily comprises proteins that are activated in response to various pathogenic stimuli in the diabetic state. Hyperglycaemia is the predominant stimulus that induces the activation of distinct PKC isoforms within a cell, each mediating specific functions, probably through differential subcellular localisation. The contribution of individual PKC isoforms can be directly addressed in vivo using innovative PKC-isoform-specific knockout (KO) mouse models, which are providing key insights into the physiological function of PKC isoform diversity in the development of diabetic nephropathy. Such studies can be a valuable complementary approach to more commonly used pharmacological analyses using agents such as ruboxistaurin mesylate (Arxxant, LY333531), which is claimed to specifically inhibit the PKC-beta-isoform. As expected given the multiple and specific properties of the isoforms in vitro, deletion of different PKC isoform signalling pathways leads to distinct phenotypes in mice. Notably, KOs of the individual PKCs assigned specific non-redundant biological functions to each isoform, which were not compensated for by the others. Thus, PKC isoform specificity and cellular diversity seem to be responsible for the divergent outcomes leading to albuminuria and/or renal fibrosis according to studies on the streptozotocin-induced mouse model of diabetes. This review discusses the role of individual PKC isoforms in diabetic nephropathy and their potential therapeutic implications. Defining and targeting mediators of increased intracellular activation in the diabetic microvasculature will have important clinical and therapeutic benefits and help in the design of novel effective therapies in the near future.


Asunto(s)
Nefropatías Diabéticas/enzimología , Proteína Quinasa C/metabolismo , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/fisiopatología , Activación Enzimática , Inhibidores Enzimáticos/uso terapéutico , Humanos , Hiperglucemia/enzimología , Indoles/uso terapéutico , Isoenzimas/deficiencia , Isoenzimas/genética , Isoenzimas/metabolismo , Riñón/enzimología , Maleimidas/uso terapéutico , Ratones , Ratones Noqueados , Ratones Mutantes , Ratones Transgénicos , Modelos Animales , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/deficiencia , Proteína Quinasa C/genética , Proteína Quinasa C beta , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA