Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Theor Appl Genet ; 134(11): 3611-3623, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34319424

RESUMEN

KEY MESSAGE: Soybean acyl-ACP thioesterase gene family have been characterized; GmFATA1A mutants were discovered to confer high oleic acid, while GmFATB mutants presented low palmitic and high oleic acid seed content. Soybean oil stability and quality are primarily determined by the relative proportions of saturated versus unsaturated fatty acids. Commodity soybean typically contains 11% palmitic acid, as the primary saturated fatty acids. Reducing palmitic acid content is the principal approach to minimize the levels of saturated fatty acids in soybean. Though high palmitic acid enhances oxidative stability of soybean oil, it is negatively correlated with oil and oleic acid content and can cause coronary heart diseases for humans. For plants, acyl-acyl carrier protein (ACP) thioesterases (TEs) are a group of enzymes to hydrolyze acyl group and release free fatty acid from plastid. Among them, GmFATB1A has become the main target to genetically reduce the palmitic acid content in soybean. However, the role of members in soybean acyl-ACP thioesterase gene family is largely unknown. In this study, we characterized two classes of TEs, GmFATA, and GmFATB in soybean. We also denominated two GmFATA members and discovered six additional members that belong to GmFATB gene family through phylogenetic, syntenic, and in silico analysis. Using TILLING-by-Sequencing+, we identified an allelic series of mutations in five soybean acyl-ACP thioesterase genes, including GmFATA1A, GmFATB1A, GmFATB1B, GmFATB2A, and GmFATB2B. Additionally, we discovered mutations at GmFATA1A to confer high oleic acid (up to 34.5%) content, while mutations at GmFATB presented low palmitic acid (as low as 5.6%) and high oleic acid (up to 36.5%) phenotypes. The obtained soybean mutants with altered fatty acid content can be used in soybean breeding program for improving soybean oil composition traits.


Asunto(s)
Ácidos Grasos/química , Glycine max/genética , Proteínas de Plantas/genética , Aceite de Soja/química , Tioléster Hidrolasas/genética , Familia de Multigenes , Ácido Oléico , Ácido Palmítico , Filogenia , Fitomejoramiento , Semillas/química , Glycine max/enzimología
2.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921707

RESUMEN

Reverse genetic approaches have been widely applied to study gene function in crop species; however, these techniques, including gel-based TILLING, present low efficiency to characterize genes in soybeans due to genome complexity, gene duplication, and the presence of multiple gene family members that share high homology in their DNA sequence. Chemical mutagenesis emerges as a genetically modified-free strategy to produce large-scale soybean mutants for economically important traits improvement. The current study uses an optimized high-throughput TILLING by target capture sequencing technology, or TILLING-by-Sequencing+ (TbyS+), coupled with universal bioinformatic tools to identify population-wide mutations in soybeans. Four ethyl methanesulfonate mutagenized populations (4032 mutant families) have been screened for the presence of induced mutations in targeted genes. The mutation types and effects have been characterized for a total of 138 soybean genes involved in soybean seed composition, disease resistance, and many other quality traits. To test the efficiency of TbyS+ in complex genomes, we used soybeans as a model with a focus on three desaturase gene families, GmSACPD, GmFAD2, and GmFAD3, that are involved in the soybean fatty acid biosynthesis pathway. We successfully isolated mutants from all the six gene family members. Unsurprisingly, most of the characterized mutants showed significant changes either in their stearic, oleic, or linolenic acids. By using TbyS+, we discovered novel sources of soybean oil traits, including high saturated and monosaturated fatty acids in addition to low polyunsaturated fatty acid contents. This technology provides an unprecedented platform for highly effective screening of polyploid mutant populations and functional gene analysis. The obtained soybean mutants from this study can be used in subsequent soybean breeding programs for improved oil composition traits.


Asunto(s)
Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Aceite de Soja/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Mutación/genética , Proteínas de Plantas/genética , Glycine max/genética
3.
Genes (Basel) ; 10(12)2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31783508

RESUMEN

Soybean [Glycine max (L.) Merr.] seed is a valuable source of protein and oil worldwide. Traditionally, the natural variations were heavily used in conventional soybean breeding programs to select desired traits. However, traditional plant breeding is encumbered with low frequencies of spontaneous mutations. In mutation breeding, genetic variations from induced mutations provide abundant sources of alterations in important soybean traits; this facilitated the development of soybean germplasm with modified seed composition traits to meet the different needs of end users. In this study, a total of 2366 'Forrest'-derived M2 families were developed for both forward and reverse genetic studies. A subset of 881 M3 families was forward genetically screened to measure the contents of protein, oil, carbohydrates, and fatty acids. A total of 14 mutants were identified to have stable seed composition phenotypes observed in both M3 and M4 generations. Correlation analyses have been conducted among ten seed composition traits and compared to a collection of 103 soybean germplasms. Mainly, ethyl methanesulfonate (EMS) mutagenesis had a strong impact on the seed-composition correlation that was observed among the 103 soybean germplasms, which offers multiple benefits for the soybean farmers and industry to breed for desired multiple seed phenotypes.


Asunto(s)
Metanosulfonato de Etilo/efectos adversos , Glycine max/efectos de los fármacos , Mutación , Carbohidratos/análisis , Ácidos Grasos/análisis , Fenotipo , Fitomejoramiento , Aceites de Plantas/análisis , Semillas/química , Semillas/efectos de los fármacos , Semillas/genética , Proteínas de Soja/análisis , Proteínas de Soja/efectos de los fármacos , Glycine max/química , Glycine max/genética
4.
BMC Genomics ; 8: 112, 2007 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-17474978

RESUMEN

BACKGROUND: Quantitative phenotypic variation of agronomic characters in crop plants is controlled by environmental and genetic factors (quantitative trait loci = QTL). To understand the molecular basis of such QTL, the identification of the underlying genes is of primary interest and DNA sequence analysis of the genomic regions harboring QTL is a prerequisite for that. QTL mapping in potato (Solanum tuberosum) has identified a region on chromosome V tagged by DNA markers GP21 and GP179, which contains a number of important QTL, among others QTL for resistance to late blight caused by the oomycete Phytophthora infestans and to root cyst nematodes. RESULTS: To obtain genomic sequence for the targeted region on chromosome V, two local BAC (bacterial artificial chromosome) contigs were constructed and sequenced, which corresponded to parts of the homologous chromosomes of the diploid, heterozygous genotype P6/210. Two contiguous sequences of 417,445 and 202,781 base pairs were assembled and annotated. Gene-by-gene co-linearity was disrupted by non-allelic insertions of retrotransposon elements, stretches of diverged intergenic sequences, differences in gene content and gene order. The latter was caused by inversion of a 70 kbp genomic fragment. These features were also found in comparison to orthologous sequence contigs from three homeologous chromosomes of Solanum demissum, a wild tuber bearing species. Functional annotation of the sequence identified 48 putative open reading frames (ORF) in one contig and 22 in the other, with an average of one ORF every 9 kbp. Ten ORFs were classified as resistance-gene-like, 11 as F-box-containing genes, 13 as transposable elements and three as transcription factors. Comparing potato to Arabidopsis thaliana annotated proteins revealed five micro-syntenic blocks of three to seven ORFs with A. thaliana chromosomes 1, 3 and 5. CONCLUSION: Comparative sequence analysis revealed highly conserved collinear regions that flank regions showing high variability and tandem duplicated genes. Sequence annotation revealed that the majority of the ORFs were members of multiple gene families. Comparing potato to Arabidopsis thaliana annotated proteins suggested fragmented structural conservation between these distantly related plant species.


Asunto(s)
Arabidopsis/genética , Cromosomas de las Plantas/genética , Inmunidad Innata/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Solanum/genética , Arabidopsis/microbiología , Secuencia de Bases , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Biblioteca de Genes , Orden Génico , Datos de Secuencia Molecular , Phytophthora , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN , Solanum/microbiología , Especificidad de la Especie , Sintenía/genética
5.
Plant J ; 38(2): 285-97, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15078331

RESUMEN

The endoparasitic root cyst nematode Globodera rostochiensis causes considerable damage in potato cultivation. In the past, major genes for nematode resistance have been introgressed from related potato species into cultivars. Elucidating the molecular basis of resistance will contribute to the understanding of nematode-plant interactions and assist in breeding nematode-resistant cultivars. The Gro1 resistance locus to G. rostochiensis on potato chromosome VII co-localized with a resistance-gene-like (RGL) DNA marker. This marker was used to isolate from genomic libraries 15 members of a closely related candidate gene family. Analysis of inheritance, linkage mapping, and sequencing reduced the number of candidate genes to three. Complementation analysis by stable potato transformation showed that the gene Gro1-4 conferred resistance to G. rostochiensis pathotype Ro1. Gro1-4 encodes a protein of 1136 amino acids that contains Toll-interleukin 1 receptor (TIR), nucleotide-binding (NB), leucine-rich repeat (LRR) homology domains and a C-terminal domain with unknown function. The deduced Gro1-4 protein differed by 29 amino acid changes from susceptible members of the Gro1 gene family. Sequence characterization of 13 members of the Gro1 gene family revealed putative regulatory elements and a variable microsatellite in the promoter region, insertion of a retrotransposon-like element in the first intron, and a stop codon in the NB coding region of some genes. Sequence analysis of RT-PCR products showed that Gro1-4 is expressed, among other members of the family including putative pseudogenes, in non-infected roots of nematode-resistant plants. RT-PCR also demonstrated that members of the Gro1 gene family are expressed in most potato tissues.


Asunto(s)
Genes de Plantas , Solanum tuberosum/genética , Solanum tuberosum/parasitología , Tylenchoidea/patogenicidad , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cromosomas Artificiales Bacterianos/genética , Clonación Molecular , ADN de Plantas/genética , Expresión Génica , Prueba de Complementación Genética , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Plantas Modificadas Genéticamente , Polimorfismo de Longitud del Fragmento de Restricción , Homología de Secuencia de Ácido Nucleico
6.
Plant J ; 30(3): 361-71, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12000683

RESUMEN

Late blight caused by the oomycete Phytophthora infestans is the most destructive disease in potato cultivation worldwide. New, more virulent P. infestans strains have evolved which overcome the genetic resistance that has been introgressed by conventional breeding from wild potato species into commercial varieties. R genes (for single-gene resistance) and genes for quantitative resistance to late blight are present in the germplasm of wild and cultivated potato. The molecular basis of single-gene and quantitative resistance to late blight is unknown. We have cloned R1, the first gene for resistance to late blight, by combining positional cloning with a candidate gene approach. The R1 gene is member of a gene family. It encodes a protein of 1293 amino acids with a molecular mass of 149.4 kDa. The R1 gene belongs to the class of plant genes for pathogen resistance that have a leucine zipper motif, a putative nucleotide binding domain and a leucine-rich repeat domain. The most closely related plant resistance gene (36% identity) is the Prf gene for resistance to Pseudomonas syringae of tomato. R1 is located within a hot spot for pathogen resistance on potato chromosome V. In comparison to the susceptibility allele, the resistance allele at the R1 locus represents a large insertion of a functional R gene.


Asunto(s)
Phytophthora/crecimiento & desarrollo , Enfermedades de las Plantas/genética , Proteínas/genética , Solanum tuberosum/genética , Secuencia de Aminoácidos , Mapeo Cromosómico , Clonación Molecular , Prueba de Complementación Genética , Inmunidad Innata/genética , Leucina Zippers/genética , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Análisis de Secuencia de ADN , Solanum tuberosum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA