Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 315: 116682, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37263318

RESUMEN

ETNOPHARMACOLOGICAL RELEVANCE: Traditional uses of Annona muricata L. (soursop) include treatment for cancer, fungal infections, and inflammatory diseases. Its phytoconstituents, mainly acetogenins and alkaloids, are associated with therapeutic activity and clinical application is currently under investigation. However, the application of phytotherapy to treat diseases caused by fungal biofilms, such as vulvovaginal candidiasis (VVC), is still limited. AIM OF THE STUDY: To investigate the activity of the ethanolic extract of A. muricata leaves (AML) against biofilms formed by multiresistant Candida albicans (ATCC® 10231) both in vitro and in a VVC experimental model. MATERIAL AND METHODS: C. albicans biofilms were grown and their adhesion, proliferation, development, and matrix composition studied by spectrophotometry, scanning electron microscopy (SEM), whole slide imaging (WSI), and biochemical assays without or with AML treatment. In parallel, in vivo experiments were conducted using a murine model of infection treated with different concentrations of the extract and nystatin. Fungal burden and histological changes were investigated. RESULTS: The proliferation and adhesion of C. albicans biofilms were significantly reduced as confirmed by SEM and WSI quantitative analyses. Furthermore, the concentration of carbohydrates, proteins and DNA was reduced in the biofilm matrix. In vivo assays demonstrated that AML was able to reduce the fungal burden and the inflammatory process. CONCLUSIONS: The findings further emphasized the therapeutic and scientific potential of AML, thus encouraging its future use in the treatment of VVC.


Asunto(s)
Annona , Candidiasis Vulvovaginal , Leucemia Mieloide Aguda , Humanos , Femenino , Animales , Ratones , Candida albicans , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candidiasis Vulvovaginal/tratamiento farmacológico , Biopelículas , Etanol/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico
2.
J Ethnopharmacol ; 301: 115856, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36280018

RESUMEN

ETNOPHARMACOLOGICAL RELEVANCE: Annona muricata L. (soursop) is traditionally used in the treatment of inflammatory diseases, cancer, and infections caused by fungi. The therapeutic activity explored by its medicinal use is generally associated with its phytoconstituents, such as acetogenins and alkaloids. However, its potential antifungal bioactivity as well as its mechanism of action remains to be established. AIM OF THE STUDY: To evaluate the antifungal activity of the ethanolic extract of A. muricata leaves against multidrug-resistant Candida albicans (ATCC® 10231). MATERIAL AND METHODS: Phytoconstituents were detected by UFLC-QTOF-MS. The minimum inhibitory concentration was determined, followed by the determination of the minimum fungicidal concentration. For planktonic cells, the growth curve and cell density were evaluated. Studies to understand the mechanism of action on the cell envelope involved crystal violet permeability, membrane extravasation, sorbitol protection, exogenous ergosterol binding assay, metabolic activity, and cell viability. Furthermore, mitochondrial membrane potential was assessed. RESULTS: Our analyses demonstrated a significant inhibitory effect of A. muricata, with the ability to reduce fungal growth by 58% and cell density by 65%. The extract affected both the fungal plasma membrane and cell wall integrity, with significant reduction of the cell viability. Depolarization of the fungal mitochondrial membrane was observed after treatment with A. muricata. Rutin, xi-anomuricine, kaempferol-3O-rutinoside, nornuciferine, xylopine, atherosperminine, caffeic acid, asimilobine, s-norcorydine, loliolide, annohexocin, annomuricin, annopentocin, and sucrose were identified as extract bioactive components. CONCLUSIONS: Our findings show that the A. muricata extract is a source of chemical diversity, which acts as a potential antifungal agent with promising application to the therapy of infections caused by C. albicans.


Asunto(s)
Annona , Annona/química , Candida albicans , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Extractos Vegetales/uso terapéutico , Pared Celular , Membrana Celular , Verduras
3.
Med Mycol ; 59(12): 1210-1224, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34468763

RESUMEN

Spilanthol is a bioactive alkylamide from the native Amazon plant species, Acmella oleracea. However, antifungal activities of spilanthol and its application to the therapeutic treatment of candidiasis remain to be explored. This study sought to evaluate the in vitro and in vivo antifungal activity of spilanthol previously isolated from A. oleracea (spilanthol(AcO)) against Candida albicans ATCC® 10231™, a multidrug-resistant fungal strain. Microdilution methods were used to determine inhibitory and fungicidal concentrations of spilanthol(AcO). In planktonic cultures, the fungal growth kinetics, yeast cell metabolic activity, cell membrane permeability and cell wall integrity were investigated. The effect of spilanthol(AcO) on the proliferation and adhesion of fungal biofilms was evaluated by whole slide imaging and scanning electron microscopy. The biochemical composition of the biofilm matrix was also analyzed. In parallel, spilanthol(AcO) was tested in vivo in an experimental vulvovaginal candidiasis model. Our in vitro analyses in C. albicans planktonic cultures detected a significant inhibitory effect of spilanthol(AcO), which affects both yeast cell membrane and cell wall integrity, interfering with the fungus growth. C. albicans biofilm proliferation and adhesion, as well as, carbohydrates and DNA in biofilm matrix were reduced after spilanthol(AcO) treatment. Moreover, infected rats treated with spilanthol(AcO) showed consistent reduction of both fungal burden and inflammatory processes compared to the untreated animals. Altogether, our findings demonstrated that spilanthol(AcO) is an bioactive compound against planktonic and biofilm forms of a multidrug resistant C. albicans strain. Furthermore, spilanthol(AcO) can be potentially considered for therapeutical treatment of vulvovaginal candidiasis caused by C. albicans. LAY SUMMARY: This study sought to evaluate the antifungal activity of spilanthol against Candida albicans ATCC® 10 231™, a multidrug-resistant fungal strain. Our findings demonstrated that spilanthol(AcO) can be potentially considered for therapeutical treatment of vulvovaginal candidiasis caused by C. albicans.


Asunto(s)
Candidiasis Vulvovaginal , Enfermedades de los Roedores , Animales , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Biopelículas , Candida albicans , Candidiasis Vulvovaginal/tratamiento farmacológico , Candidiasis Vulvovaginal/veterinaria , Pruebas de Sensibilidad Microbiana/veterinaria , Alcamidas Poliinsaturadas/farmacología , Ratas , Enfermedades de los Roedores/tratamiento farmacológico
4.
Colloids Surf B Biointerfaces ; 196: 111371, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32980571

RESUMEN

The purpose of this study was to develop tea tree oil (TTO)-loaded chitosan-poly(ε-caprolactone) core-shell nanocapsules (NC-TTO-Ch) aiming the topical acne treatment. TTO was analyzed by gas chromatography-mass spectrometry, and nanocapsules were characterized regarding mean particle size (Z-average), polydispersity index (PdI), zeta potential (ZP), pH, entrapment efficiency (EE), morphology by Atomic Force Microscopy (AFM), and anti-Cutibacterium acnes activity. The main constituents of TTO were terpinen-4-ol (37.11 %), γ-terpinene (16.32 %), α-terpinene (8.19 %), ρ-cimene (6.56 %), and α-terpineol (6.07 %). NC-TTO-Ch presented Z-average of 268.0 ± 3.8 nm and monodisperse size distribution (PdI < 0.3). After coating the nanocapsules with chitosan, we observed an inversion in ZP to a positive value (+31.0 ± 1.8 mV). This finding may indicate the presence of chitosan on the nanocapsules' surface, which was corroborated by the AFM images. In addition, NC-TTO-Ch showed a slightly acidic pH (∼5.0), compatible with topical application. The EE, based on Terpinen-4-ol concentration, was approximately 95 %. This data suggests the nanocapsules' ability to reduce the TTO volatilization. Furthermore, NC-TTO-Ch showed significant anti-C. acnes activity, with a 4× reduction in the minimum inhibitory concentration, compared to TTO and a decrease in C. acnes cell viability, with an increase in the percentage of dead cells (17 %) compared to growth control (6.6 %) and TTO (9.7 %). Therefore, chitosan-poly(ε-caprolactone) core-shell nanocapsules are a promising tool for TTO delivery, aiming at the activity against C. acnes for the topical acne treatment.


Asunto(s)
Quitosano , Nanocápsulas , Aceite de Árbol de Té , Poliésteres , Aceite de Árbol de Té/farmacología
5.
An Acad Bras Cienc ; 89(3 Suppl): 2053-2073, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28813096

RESUMEN

This study aimed to further investigate the cytotoxicity against tumor cell lines and several bacterial strains of Annona squamosa and its mode of action. Methanol extracts of A. squamosa leaves (ASL) and seeds (ASS) were used. ASL showed significant antibacterial activity against S. aureus, K. pneumoniae and E. faecalis with MIC values of 78, 78 and 39 µg/mL respectively. Moreover, ASL exhibited significant biofilm disruption, rapid time dependent kinetics of bacterial killing, increased membrane permeability and significantly reduced the cell numbers and viability. Regarding the cytotoxicity against tumor cell lines, ASS was more active against Jurkat and MCF-7 cells, with CI50 1.1 and 2.1 µg/mL, respectively. ASL showed promising activity against Jurkat and HL60, with CI50 4.2 and 6.4 µg/mL, respectively. Both extracts showed lower activity against VERO cells and reduced the clonogenic survival at higher concentrations (IC90) to MCF-7 and HCT-116 lineages. The alkaloids anonaine, asimilobine, corypalmine, liriodenine nornuciferine and reticuline were identified in extracts by UPLC-ESI-MS/MS analysis. This study reinforced that A. squamosa presents a remarkable phytomedicinal potential and revealed that its antimicrobial mechanism of action is related to bacterial membrane destabilization.


Asunto(s)
Annona/química , Antibacterianos/farmacología , Enterococcus faecalis/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Extractos Vegetales/farmacología , Staphylococcus aureus/efectos de los fármacos , Animales , Línea Celular Tumoral/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Chlorocebus aethiops , Humanos , Pruebas de Sensibilidad Microbiana
6.
An. acad. bras. ciênc ; 89(3,supl): 2053-2073, 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-886784

RESUMEN

ABSTRACT This study aimed to further investigate the cytotoxicity against tumor cell lines and several bacterial strains of Annona squamosa and its mode of action. Methanol extracts of A. squamosa leaves (ASL) and seeds (ASS) were used. ASL showed significant antibacterial activity against S. aureus, K. pneumoniae and E. faecalis with MIC values of 78, 78 and 39 µg/mL respectively. Moreover, ASL exhibited significant biofilm disruption, rapid time dependent kinetics of bacterial killing, increased membrane permeability and significantly reduced the cell numbers and viability. Regarding the cytotoxicity against tumor cell lines, ASS was more active against Jurkat and MCF-7 cells, with CI50 1.1 and 2.1 µg/mL, respectively. ASL showed promising activity against Jurkat and HL60, with CI50 4.2 and 6.4 µg/mL, respectively. Both extracts showed lower activity against VERO cells and reduced the clonogenic survival at higher concentrations (IC90) to MCF-7 and HCT-116 lineages. The alkaloids anonaine, asimilobine, corypalmine, liriodenine nornuciferine and reticuline were identified in extracts by UPLC-ESI-MS/MS analysis. This study reinforced that A. squamosa presents a remarkable phytomedicinal potential and revealed that its antimicrobial mechanism of action is related to bacterial membrane destabilization.


Asunto(s)
Humanos , Animales , Staphylococcus aureus/efectos de los fármacos , Extractos Vegetales/farmacología , Enterococcus faecalis/efectos de los fármacos , Annona/química , Klebsiella pneumoniae/efectos de los fármacos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Membrana Celular/efectos de los fármacos , Chlorocebus aethiops , Línea Celular Tumoral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA