Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
eNeuro ; 7(1)2020.
Artículo en Inglés | MEDLINE | ID: mdl-31882534

RESUMEN

Cholinergic transmission is essential for adaptive behavior and has been suggested to play a central role in the modulation of brain states by means of the modulation of thalamic neurons. Midbrain cholinergic neurons from the pedunculopontine nucleus (PPN) and the laterodorsal tegmental nucleus (LDT) provide dense innervation of the thalamus, but a detailed connectivity mapping is missing. Using conditional tracing of midbrain cholinergic axons in the rat, together with a detailed segmentation of thalamic structures, we show that projections arising in PPN and LDT are topographically organized along the entire extent of the thalamus. PPN cholinergic neurons preferentially innervate thalamic relay structures, whereas LDT cholinergic neurons preferentially target thalamic limbic nuclei. Moreover, both PPN and LDT provide a dense innervation of the intralaminar thalamic nuclei. Notably, we observe a differential synaptic density that functionally dissociates between PPN and LDT innervation. Our results show that midbrain cholinergic neurons innervate virtually all thalamic structures and this innervation is functionally segregated.


Asunto(s)
Mesencéfalo , Tálamo , Animales , Axones , Colinérgicos , Neuronas Colinérgicas , Ratas , Núcleos Talámicos
2.
J Neurosci ; 34(13): 4509-18, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24671996

RESUMEN

Cholinergic transmission in the striatal complex is critical for the modulation of the activity of local microcircuits and dopamine release. Release of acetylcholine has been considered to originate exclusively from a subtype of striatal interneuron that provides widespread innervation of the striatum. Cholinergic neurons of the pedunculopontine (PPN) and laterodorsal tegmental (LDT) nuclei indirectly influence the activity of the dorsal striatum and nucleus accumbens through their innervation of dopamine and thalamic neurons, which in turn converge at the same striatal levels. Here we show that cholinergic neurons in the brainstem also provide a direct innervation of the striatal complex. By the expression of fluorescent proteins in choline acetyltransferase (ChAT)::Cre(+) transgenic rats, we selectively labeled cholinergic neurons in the rostral PPN, caudal PPN, and LDT. We show that cholinergic neurons topographically innervate wide areas of the striatal complex: rostral PPN preferentially innervates the dorsolateral striatum, and LDT preferentially innervates the medial striatum and nucleus accumbens core in which they principally form asymmetric synapses. Retrograde labeling combined with immunohistochemistry in wild-type rats confirmed the topography and cholinergic nature of the projection. Furthermore, transynaptic gene activation and conventional double retrograde labeling suggest that LDT neurons that innervate the nucleus accumbens also send collaterals to the thalamus and the dopaminergic midbrain, thus providing both direct and indirect projections, to the striatal complex. The differential activity of cholinergic interneurons and cholinergic neurons of the brainstem during reward-related paradigms suggest that the two systems play different but complementary roles in the processing of information in the striatum.


Asunto(s)
Acetilcolina/metabolismo , Vías Aferentes/fisiología , Tronco Encefálico/fisiología , Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Animales , Channelrhodopsins , Toxina del Cólera/metabolismo , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/ultraestructura , Femenino , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Neuronas/ultraestructura , Núcleo Accumbens/citología , Núcleo Accumbens/ultraestructura , Ratas , Ratas Long-Evans , Ratas Transgénicas , Sinapsis/metabolismo , Sinapsis/ultraestructura , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Aglutininas del Germen de Trigo/metabolismo
3.
Brain Struct Funct ; 219(5): 1787-800, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23832596

RESUMEN

The major afferent innervation of the basal ganglia is derived from the cortex and the thalamus. These excitatory inputs mainly target the striatum where they innervate the principal type of striatal neuron, the medium-sized spiny neurons (MSNs), and are critical in the expression of basal ganglia function. The aim of this work was to test directly whether corticostriatal and thalamostriatal terminals make convergent synaptic contact with individual direct and indirect pathway MSNs. Individual MSNs were recorded in vivo and labelled by the juxtacellular method in the striatum of BAC transgenic mice in which green fluorescent protein reports the expression of dopamine D1 or D2 receptors. After recovery of the neurons, the tissue was immunolabelled for vesicular glutamate transporters type 1 and 2, as markers of cortical and thalamic terminals, respectively. Three of each class of MSNs were reconstructed in 3D and second-order dendrites selected for electron microscopic analysis. Our findings show that direct and indirect pathway MSNs, located in the matrix compartment of the striatum, receive convergent input from cortex and thalamus preferentially on their spines. There were no differences in the pattern of innervation of direct and indirect pathway MSNs, but the cortical input is more prominent in both and synaptic density is greater for direct pathway neurons. The 3D reconstructions revealed no morphological differences between direct and indirect MSNs. Overall, our findings demonstrate that direct and indirect pathway MSNs located in the matrix receive convergent cortical and thalamic input and suggest that both cortical and thalamic inputs are involved in the activation of MSNs.


Asunto(s)
Corteza Cerebral/fisiología , Cuerpo Estriado/citología , Vías Nerviosas/fisiología , Neuronas/fisiología , Tálamo/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Corteza Cerebral/citología , Estimulación Eléctrica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Imagenología Tridimensional , Masculino , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Modelos Neurológicos , Neuronas/metabolismo , Neuronas/ultraestructura , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Tálamo/citología , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteínas de Transporte Vesicular de Glutamato/metabolismo
4.
Ann Neurol ; 64 Suppl 2: S30-46, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19127584

RESUMEN

The pathophysiology of Parkinson's disease is reviewed in light of recent advances in the understanding of the functional organization of the basal ganglia (BG). Current emphasis is placed on the parallel interactions between corticostriatal and corticosubthalamic afferents on the one hand, and internal feedback circuits modulating BG output through the globus pallidus pars interna and substantia nigra pars reticulata on the other. In the normal BG network, the globus pallidus pars externa emerges as a main regulatory station of output activity. In the parkinsonian state, dopamine depletion shifts the BG toward inhibiting cortically generated movements by increasing the gain in the globus pallidus pars externa-subthalamic nucleus-globus pallidus pars interna network and reducing activity in "direct" cortico-putaminal-globus pallidus pars interna projections. Standard pharmacological treatments do not mimic the normal physiology of the dopaminergic system and, therefore, fail to restore a functional balance between corticostriatal afferents in the so-called direct and indirect pathways, leading to the development of motor complications. This review emphasizes the concept that the BG can no longer be understood as a "go-through" station in the control of movement, behavior, and emotions. The growing understanding of the complexity of the normal BG and the changes induced by DA depletion should guide the development of more efficacious therapies for Parkinson's disease.


Asunto(s)
Ganglios Basales/fisiología , Ganglios Basales/fisiopatología , Enfermedad de Parkinson/fisiopatología , Animales , Ganglios Basales/anatomía & histología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Dopaminérgicos/uso terapéutico , Terapia por Estimulación Eléctrica , Humanos , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Vías Nerviosas/fisiopatología , Enfermedad de Parkinson/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA