Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
ALTEX ; 39(2): 297­314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35064273

RESUMEN

Complex in vitro models (CIVM) offer the potential to improve pharmaceutical clinical drug attrition due to safety and/ or efficacy concerns. For this technology to have an impact, the establishment of robust characterization and qualifi­cation plans constructed around specific contexts of use (COU) is required. This article covers the output from a workshop between the Food and Drug Administration (FDA) and Innovation and Quality Microphysiological Systems (IQ MPS) Affiliate. The intent of the workshop was to understand how CIVM technologies are currently being applied by pharma­ceutical companies during drug development and are being tested at the FDA through various case studies in order to identify hurdles (real or perceived) to the adoption of microphysiological systems (MPS) technologies, and to address evaluation/qualification pathways for these technologies. Output from the workshop includes the alignment on a working definition of MPS, a detailed description of the eleven CIVM case studies presented at the workshop, in-depth analysis, and key take aways from breakout sessions on ADME (absorption, distribution, metabolism, and excretion), pharmacology, and safety that covered topics such as qualification and performance criteria, species differences and concordance, and how industry can overcome barriers to regulatory submission of CIVM data. In conclusion, IQ MPS Affiliate and FDA scientists were able to build a general consensus on the need for animal CIVMs for preclinical species to better determine species concordance. Furthermore, there was acceptance that CIVM technologies for use in ADME, pharmacology and safety assessment will require qualification, which will vary depending on the specific COU.


Asunto(s)
Alternativas a las Pruebas en Animales , Dispositivos Laboratorio en un Chip , Animales , Evaluación Preclínica de Medicamentos , Industria Farmacéutica , Preparaciones Farmacéuticas/metabolismo , Estados Unidos , United States Food and Drug Administration
2.
ALTEX ; 37(3): 365-394, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32113184

RESUMEN

The first microfluidic microphysiological systems (MPS) entered the academic scene more than 15 years ago and were considered an enabling technology to human (patho)biology in vitro and, therefore, provide alternative approaches to laboratory animals in pharmaceutical drug development and academic research. Nowadays, the field generates more than a thousand scientific publications per year. Despite the MPS hype in academia and by platform providers, which says this technology is about to reshape the entire in vitro culture landscape in basic and applied research, MPS approaches have neither been widely adopted by the pharmaceutical industry yet nor reached regulated drug authorization processes at all. Here, 46 leading experts from all stakeholders - academia, MPS supplier industry, pharmaceutical and consumer products industries, and leading regulatory agencies - worldwide have analyzed existing challenges and hurdles along the MPS-based assay life cycle in a second workshop of this kind in June 2019. They identified that the level of qualification of MPS-based assays for a given context of use and a communication gap between stakeholders are the major challenges for industrial adoption by end-users. Finally, a regulatory acceptance dilemma exists against that background. This t4 report elaborates on these findings in detail and summarizes solutions how to overcome the roadblocks. It provides recommendations and a roadmap towards regulatory accepted MPS-based models and assays for patients' benefit and further laboratory animal reduction in drug development. Finally, experts highlighted the potential of MPS-based human disease models to feedback into laboratory animal replacement in basic life science research.


Asunto(s)
Alternativas a las Pruebas en Animales , Bienestar del Animal , Desarrollo de Medicamentos , Evaluación Preclínica de Medicamentos/métodos , Dispositivos Laboratorio en un Chip , Animales , Industria Farmacéutica , Humanos , Modelos Biológicos
3.
Regul Toxicol Pharmacol ; 113: 104642, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32197968

RESUMEN

During the 25 years since the US Congress passed the Dietary Supplement Health and Education Act (DSHEA), the law that transformed the US Food and Drug Administration's (FDA's) authority to regulate dietary supplements, the dietary supplement market has grown exponentially. Retail sales of herbal products, a subcategory of dietary supplements, have increased 83% from 2008 to 2018 ($4.8 to $8.8 billion USD). Although consumers often equate "natural" with "safe", it is well recognized by scientists that constituents in these natural products (NPs) can result in toxicity. Additionally, when NPs are co-consumed with pharmaceutical agents, the precipitant NP can alter drug disposition and drug delivery, thereby enhancing or reducing the therapeutic effect of the object drug(s). With the widespread use of NPs, these effects can be underappreciated. We present a summary of a symposium presented at the Annual Meeting of the Society of Toxicology 2019 (12 March 2019) that discussed potential toxicities of NPs alone and in combination with drugs.


Asunto(s)
Productos Biológicos/efectos adversos , Legislación Alimentaria , Preparaciones Farmacéuticas , Productos Biológicos/administración & dosificación , Suplementos Dietéticos , Humanos , Mercadotecnía , Preparaciones Farmacéuticas/administración & dosificación , Estados Unidos , United States Food and Drug Administration
4.
Biochem Biophys Res Commun ; 443(3): 1097-104, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24384371

RESUMEN

Epigallocatechin gallate (EGCG), the major flavonoid in green tea, is consumed via tea products and dietary supplements, and has been tested in clinical trials. However, EGCG can cause hepatotoxicity in humans and animals by unknown mechanisms. Here EGCG effects on rat liver mitochondria were examined. EGCG showed negligible effects on oxidative phosphorylation at 7.5-100µM in normal mitochondria. However, respiratory chain complexes (RCCs) were profoundly inhibited by EGCG in mitochondria undergoing Ca(2+) overload-induced mitochondrial permeability transition (MPT). As RCCs are located in mitochondrial inner membranes (IM) and matrix, it was reasoned that EGCG could not readily pass through IM to affect RCCs in normal mitochondria but may do so when IM integrity is compromised. This speculation was substantiated in three ways. (1) Purified EGCG-bound proteins were barely detectable in normal mitochondria and contained no RCCs as determined by Western blotting, but swelling mitochondria contained about 1.5-fold more EGCG-bound proteins which included four RCC subunits together with cyclophilin D that locates in mitochondrial matrix. (2) Swelling mitochondria consumed more EGCG than normal ones. (3) The MPT blocker cyclosporine A diminished the above-mentioned difference. Among four subunits of RCC II, only SDHA and SDHB which locate in mitochondrial matrix, but not SDHC or SDHD which insert into the IM, were found to be EGCG targets. Interestingly, EGCG promoted Ca(2+) overload-induced MPT only when moderate MPT already commenced. This study identified hepatic RCCs as targets for EGCG in swelling but not normal mitochondria, suggesting EGCG may trigger hepatotoxicity by worsening pre-existing mitochondria abnormalities.


Asunto(s)
Catequina/análogos & derivados , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Dilatación Mitocondrial/efectos de los fármacos , Té/química , Animales , Western Blotting , Catequina/farmacología , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Electroforesis en Gel de Poliacrilamida , Masculino , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Fosforilación Oxidativa/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Subunidades de Proteína/metabolismo , Ratas , Ratas Sprague-Dawley , Tinción con Nitrato de Plata
5.
Artículo en Inglés | MEDLINE | ID: mdl-23831706

RESUMEN

Penicillin (PEN) V, a well-known antibiotic widely used in the treatment of Gram-positive bacterial infections, was evaluated in this study. LC/MS- and NMR-based metabolic profiling were employed to examine the effects of PEN on the host's metabolic phenotype. Male Sprague Dawley rats were randomly divided into groups that were orally administered either 0.5% methylcellulose vehicle, 100 or 2400mg PEN/kg body weight once daily for up to 14 consecutive days. Urine, plasma and tissue were collected from groups sacrificed at 6h, 24h or 14d. The body fluids were subjected to clinical chemistry and metabolomics analysis; the tissue samples were processed for histopathology. The only notable clinical chemistry observation was that gamma glutamyltransferase (GGT) significantly decreased at 24h for both dose groups, and significantly decreased at 14d for the high-dose groups. Partial least squares discriminant analysis scores plots of the metabolomics data from urine and plasma samples showed dose- and time-dependent grouping patterns. Time- and dose-dependent decreases in urinary metabolites including indole-containing metabolites (such as 3-methyldioxyindole sulfate generated from bacterial metabolism of tryptophan), organic acids containing phenyl groups (such as hippuric acid, phenyllactic acid and 3-hydroxyanthranilic acid), and metabolites conjugated with sulfate or glucuronide (such as cresol sulfate and aminophenol sulfate) indicated that the gut microflora population was suppressed. Decreases in many host-gut microbiota urinary co-metabolites (indole- and phenyl-containing metabolites, amino acids, vitamins, nucleotides and bile acids) suggested gut microbiota play important roles in the regulation of host metabolism, including dietary nutrient absorption and reprocessing the absorbed nutrients. Decreases in urinary conjugated metabolites (sulfate, glucuronide and glycine conjugates) implied that gut microbiota might have an impact on chemical detoxification mechanisms. In all, these results clearly show that metabolic profiling is a useful tool to better understand the effects of the antibiotic penicillin has on the gut microbiota and the host.


Asunto(s)
Antibacterianos/farmacología , Metaboloma/efectos de los fármacos , Penicilinas/farmacología , Aminoácidos/orina , Animales , Ácidos y Sales Biliares/orina , Cromatografía Liquida/métodos , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Espectroscopía de Resonancia Magnética , Masculino , Espectrometría de Masas/métodos , Nucleótidos/orina , Plasma/metabolismo , Ratas , Ratas Sprague-Dawley , Orina/química
6.
Toxicology ; 245(3): 175-81, 2008 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-18206287

RESUMEN

Biomarkers in general use today are diagnostic in that they reflect an organ's ongoing dysfunction or damage. Unfortunately, in some cases the change in the biomarker occurs too late for effective medical intervention such as seen with acute renal failure. New biomarkers of toxicity are needed to (a) alert physicians of subtle changes prior to organ dysfunction or damage to enable preventive measures and (b) predict, prior to human exposure, if a drug is likely to induce toxicity in many patients or in specific individuals. Microarray technologies can move biomarker discovery forward at an unforeseen speed as tens of thousands of genes and genetic variants can be monitored simultaneously in one biological specimen. Pharmacogenomics, herein defined as the study of a drug's effect on gene expression, can be used to discover biomarkers in solid tissues or peripheral blood cells that are altered in animals or individuals following drug exposure. Pharmacogenetics, herein defined as the study of genetic factors that affect drug response, can be employed to identify individuals whose genetic make-up suggests they would respond poorly to a particular drug. Biomarkers discovered with these approaches can result in genomic/genetic tests, protein assays or other analytical tests. Examples of such are provided with a discussion of the unresolved issues that inhibit the use of toxicity biomarkers such as biomarker validation, reimbursement of clinical tests and patient privacy.


Asunto(s)
Biomarcadores , Marcadores Genéticos , Genómica , Animales , Evaluación Preclínica de Medicamentos , Humanos , Reembolso de Seguro de Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA