Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Phytomedicine ; 123: 155252, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056145

RESUMEN

BACKGROUND: Acute kidney injury (AKI) has high morbidity and mortality, which is manifested by inflammation and apoptosis. Effective treatment methods for AKI are currently lacking. OBJECTIVE: This study demonstrated the protecting effects of Madecassoside (MA) in the cisplatin- and hypoxia-reoxygenation-induced renal tubular epithelial cells in vitro and AKI mice in vivo. METHODS: In vivo AKI mouse models were established by inducing them with cisplatin and renal ischemia-reperfusion. In vitro injury models of mouse renal tubular epithelial cells were established by inducing them with cisplatin and hypoxia and reoxygenation, respectively. The mechanism of MA effects was further explored using molecular docking and RNA-sequencing. RESULTS: MA could significantly reduce kidney injury in the cisplatin-and renal ischemia-reperfusion (IRI)-induced AKI. Further validation in the two cellular models also showed that MA had protect effects. MA can alleviate AKI in vitro and in vivo by inhibiting inflammation, cell apoptosis, and oxidative stress. MA exhibited high permeability across the Caco-2 cell, can enter cells directly. Through RNA-seq and molecular docking analysis, this study further demonstrated that MA inhibits its activity by directly binding to JNK kinase, thereby inhibiting c-JUN mediated cell apoptosis and improving AKI. In addition, MA has better renal protective effects compared to curcumin and JNK inhibitor SP600125. CONCLUSION: The results demonstrate that MA might be a potential drug for the treatment of AKI and act through the JNK/c-JUN signaling pathway.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Triterpenos , Humanos , Ratones , Animales , Cisplatino/efectos adversos , Células CACO-2 , Simulación del Acoplamiento Molecular , Lesión Renal Aguda/inducido químicamente , Apoptosis , Riñón , Estrés Oxidativo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Isquemia , Inflamación/metabolismo , Hipoxia , Ratones Endogámicos C57BL
2.
Pharmacol Res ; 197: 106950, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37820854

RESUMEN

Kidney disease can be caused by various internal and external factors that have led to a continual increase in global deaths. Current treatment methods can alleviate but do not markedly prevent disease development. Further research on kidney disease has revealed the crucial function of epigenetics, especially acetylation, in the pathology and physiology of the kidney. Histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyllysine readers jointly regulate acetylation, thus affecting kidney physiological homoeostasis. Recent studies have shown that acetylation improves mechanisms and pathways involved in various types of nephropathy. The discovery and application of novel inhibitors and activators have further confirmed the important role of acetylation. In this review, we provide insights into the physiological process of acetylation and summarise its specific mechanisms and potential therapeutic effects on renal pathology.


Asunto(s)
Enfermedades Renales , Humanos , Acetilación , Enfermedades Renales/tratamiento farmacológico , Riñón , Epigénesis Genética , Epigenómica
3.
Clin Transl Med ; 13(8): e1359, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37537731

RESUMEN

BACKGROUND: N6 -methyladenosine (m6A) is of great importance in renal physiology and disease progression, but its function and mechanism in renal fibrosis remain to be comprehensively and extensively explored. Hence, this study will explore the function and potential mechanism of critical regulator-mediated m6A modification during renal fibrosis and thereby explore promising anti-renal fibrosis agents. METHODS: Renal tissues from humans and mice as well as HK-2 cells were used as research subjects. The profiles of m6A modification and regulators in renal fibrosis were analysed at the protein and RNA levels using Western blotting, quantitative real-time polymerase chain reaction and other methods. Methylation RNA immunoprecipitation sequencing and RNA sequencing coupled with methyltransferase-like 3 (METTL3) conditional knockout were used to explore the function of METTL3 and potential targets. Gene silencing and overexpression combined with RNA immunoprecipitation were performed to investigate the underlying mechanism by which METTL3 regulates the Ena/VASP-like (EVL) m6A modification that promotes renal fibrosis. Molecular docking and virtual screening with in vitro and in vivo experiments were applied to screen promising traditional Chinese medicine (TCM) monomers and explore their mechanism of regulating the METTL3/EVL m6A axis and anti-renal fibrosis. RESULTS: METTL3 and m6A modifications were hyperactivated in both the tubular region of fibrotic kidneys and HK-2 cells. Upregulated METTL3 enhanced the m6A modification of EVL mRNA to improve its stability and expression in an insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2)-dependent manner. Highly expressed EVL binding to Smad7 abrogated the Smad7-induced suppression of transforming growth factor-ß (TGF-ß1)/Smad3 signal transduction, which conversely facilitated renal fibrosis progression. Molecular docking and virtual screening based on the structure of METTL3 identified a TCM monomer named isoforsythiaside, which inhibited METTL3 activity together with the METTL3/EVL m6A axis to exert anti-renal fibrosis effects. CONCLUSIONS: Collectively, the overactivated METTL3/EVL m6A axis is a potential target for renal fibrosis therapy, and the pharmacological inhibition of METTL3 activity by isoforsythiaside suggests that it is a promising anti-renal fibrosis agent.


Asunto(s)
Metiltransferasas , ARN , Animales , Humanos , Ratones , Fibrosis , Metiltransferasas/genética , Metiltransferasas/metabolismo , Simulación del Acoplamiento Molecular , ARN Mensajero/genética , Proteínas de Unión al ARN
4.
Acta Pharmacol Sin ; 43(1): 96-110, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34253875

RESUMEN

Diabetic kidney disease (DKD) is one of the microvascular complications of diabetes mellitus and a major cause of end-stage renal disease with limited treatment options. Wogonin is a flavonoid derived from the root of Scutellaria baicalensis Georgi, which has shown a potent renoprotective effect. But the mechanisms of action in DKD are not fully elucidated. In this study, we investigated the effects of wogonin on glomerular podocytes in DKD using mouse podocyte clone 5 (MPC5) cells and diabetic mice model. MPC5 cells were treated with high glucose (30 mM). We showed that wogonin (4, 8, 16 µM) dose-dependently alleviated high glucose (HG)-induced MPC5 cell damage, accompanied by increased expression of WT-1, nephrin, and podocin proteins, and decreased expression of TNF-α, MCP-1, IL-1ß as well as phosphorylated p65. Furthermore, wogonin treatment significantly inhibited HG-induced apoptosis in MPC5 cells. Wogonin reversed HG-suppressed autophagy in MPC5 cells, evidenced by increased ATG7, LC3-II, and Beclin-1 protein, and decreased p62 protein. We demonstrated that wogonin directly bound to Bcl-2 in MPC5 cells. In HG-treated MPC5 cells, knockdown of Bcl-2 abolished the beneficial effects of wogonin, whereas overexpression of Bcl-2 mimicked the protective effects of wogonin. Interestingly, we found that the expression of Bcl-2 was significantly decreased in biopsy renal tissue of diabetic nephropathy patients. In vivo experiments were conducted in STZ-induced diabetic mice, which were administered wogonin (10, 20, 40 mg · kg-1 · d-1, i.g.) every other day for 12 weeks. We showed that wogonin administration significantly alleviated albuminuria, histopathological lesions, and p65 NF-κB-mediated renal inflammatory response. Wogonin administration dose-dependently inhibited podocyte apoptosis and promoted podocyte autophagy in STZ-induced diabetic mice. This study for the first time demonstrates a novel action of wogonin in mitigating glomerulopathy and podocytes injury by regulating Bcl-2-mediated crosstalk between autophagy and apoptosis. Wogonin may be a potential therapeutic drug against DKD.


Asunto(s)
Nefropatías Diabéticas/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Flavanonas/farmacología , Glomérulos Renales/efectos de los fármacos , Podocitos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Flavanonas/administración & dosificación , Inyecciones Intraperitoneales , Glomérulos Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Podocitos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Relación Estructura-Actividad
5.
Kidney Dis (Basel) ; 7(5): 372-390, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34604344

RESUMEN

BACKGROUND: Transforming growth factor-ß (TGF-ß)/Smad signaling is the central mediator in renal fibrosis, yet its functional role in acute kidney injury (AKI) is not fully understood. Recent evidence showed that TGF-ß/Smad3 may be involved in the pathogenesis of AKI, but its functional role and mechanism of action in cisplatin-induced AKI are unclear. OBJECTIVES: Demonstrating that Smad3 may play certain roles in cisplatin nephropathy due to its potential effect on programmed cell death and inflammation. METHODS: Here, we established a cisplatin-induced AKI mouse model with Smad3 knockout mice and created stable in vitro models with Smad3 knockdown tubular epithelial cells. In addition, we tested the potential of Smad3-targeted therapy using 2 in vivo protocols - lentivirus-mediated Smad3 silencing in vivo and use of naringenin, a monomer used in traditional Chinese medicine and a natural inhibitor of Smad3. RESULTS: Disruption of Smad3 attenuated cisplatin-induced kidney injury, inflammation, and NADPH oxidase 4-dependent oxidative stress. We found that Smad3-targeted therapy protected against loss of renal function and alleviated apoptosis, RIPK-mediated necroptosis, renal inflammation, and oxidative stress in cisplatin nephropathy. CONCLUSIONS: These findings show that Smad3 promotes cisplatin-induced AKI and Smad3-targeted therapy protects against this pathological process. These findings have substantial clinical relevance, as they suggest a therapeutic target for AKI.

6.
J Cell Mol Med ; 25(20): 9805-9813, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34514726

RESUMEN

Cancer cells are high in heterogeneity and versatility, which can easily adapt to the external stresses via both primary and secondary resistance. Targeting of tumour microenvironment (TME) is a new approach and an ideal therapeutic strategy especially for the multidrug resistant cancer. Recently, we invented AANG, a natural compound formula containing traditional Chinese medicine (TCM) derived Smad3 inhibitor Naringenin (NG) and Smad7 activator Asiatic Acid (AA), for rebalancing TGF-ß/Smad signalling in the TME, and its implication on the multidrug resistance is still unexplored. Here, we observed that an equilibrium shift of the Smad signalling in patients with hepatocellular carcinoma (HCC), which was dramatically enhanced in the recurrent cases showing p-glycoprotein overexpression. We optimized the formula ratio and dosage of AANG that effectively inhibit the proliferation of our unique human multidrug resistant subclone R-HepG2. Mechanistically, we found that AANG not only inhibits Smad3 at post-transcriptional level, but also upregulates Smad7 at transcriptional level in a synergistic manner in vitro. More importantly, AANG markedly suppressed the growth and p-glycoprotein expression of R-HepG2 xenografts in vivo. Thus, AANG may represent a novel and safe TCM-derived natural compound formula for overcoming HCC with p-glycoprotein-mediated multidrug resistance.


Asunto(s)
Antineoplásicos/farmacología , Productos Biológicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Anciano , Animales , Carcinoma Hepatocelular , Línea Celular Tumoral , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Humanos , Inmunohistoquímica , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Persona de Mediana Edad , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Phytomedicine ; 85: 153541, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33773190

RESUMEN

BACKGROUND: Acute kidney injury (AKI), characterised by excessive inflammatory cell recruitment and programmed cell death, has a high morbidity and mortality; however, effective and specific therapies for AKI are still lacking. OBJECTIVE: This study aimed to evaluate the renoprotective effects of gypenoside XLIX (Gyp XLIX) in AKI. METHODS: The protective effects of Gyp XLIX were tested in two AKI mouse models established using male C57BL/6 mice (aged 6-8 weeks) by a single intraperitoneal injection of cisplatin (20 mg/kg) or renal ischemia-reperfusion for 40 min. Gyp XLIX was administered intraperitoneally before cisplatin administration or renal ischemia-reperfusion. Renal function, tubular injury, renal inflammation and programmed cell death were evaluated. In addition, the renoprotective effects of Gyp XLIX were also evaluated in cisplatin- or hypoxia-treated tubular epithelial cells. The mechanisms underlying these effects were then explored using RNA sequencing. RESULTS: In vivo, Gyp XLIX substantially suppressed the increase in serum creatinine and blood urea nitrogen levels. Moreover, tubular damage was alleviated by Gyp XLIX as shown by periodic acid-Schiff staining, electron microscopy and molecular analysis of KIM-1. Consistently, we found that Gyp XLIX suppressed renal necroptosis though the RIPK1/RIPK3/MLKL pathway. The anti-inflammatory and antinecroptotic effects were further confirmed in vitro. Mechanistically, RNA sequencing showed that Gyp XLIX markedly suppressed the levels of IGF binding protein 7 (IGFBP7). Co-immunoprecipitation and western blot analysis further showed that Gyp XLIX reduced the binding of IGFBP7 to IGF1 receptor (IGF1R). Additionally, picropodophyllin, an inhibitor of IGF1R, abrogated the therapeutic effects of Gyp XLIX on cisplatin-induced renal cell injury; this finding indicated that Gyp XLIX may function by activating IGF1R-mediated downstream signalling Additionally, we also detected the metabolic distribution of Gyp XLIX after injection; Gyp XLIX had a high concentration in the kidney and exhibited a long retention time. These findings may shed light on the application of Gyp XLIX for AKI treatment clinically. CONCLUSION: Gyp XLIX may serve as a potential therapeutic agent for AKI treatment via IGFBP7/ IGF1R-dependent mechanisms.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Sustancias Protectoras/farmacología , Receptor IGF Tipo 1/metabolismo , Saponinas/farmacología , Lesión Renal Aguda/inducido químicamente , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Cisplatino , Humanos , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Necroptosis
8.
Br J Pharmacol ; 177(14): 3147-3161, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32368792

RESUMEN

As of April 9, 2020, a novel coronavirus (SARS-CoV-2) had caused 89,931 deaths and 1,503,900 confirmed cases worldwide, which indicates an increasingly severe and uncontrollable situation. Initially, little was known about the virus. As research continues, we now know the genome structure, epidemiological and clinical characteristics, and pathogenic mechanisms of SARS-CoV-2. Based on this knowledge, potential targets involved in the processes of virus pathogenesis need to be identified, and the discovery or development of drugs based on these potential targets is the most pressing need. Here, we have summarized the potential therapeutic targets involved in virus pathogenesis and discuss the advances, possibilities, and significance of drugs based on these targets for treating SARS-CoV-2. This review will facilitate the identification of potential targets and provide clues for drug development that can be translated into clinical applications for combating SARS-CoV-2.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/uso terapéutico , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Enzima Convertidora de Angiotensina 2 , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Antivirales/uso terapéutico , Basigina/metabolismo , Benzamidinas , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidad , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/terapia , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/inmunología , Ésteres , Gabexato/análogos & derivados , Gabexato/uso terapéutico , Genoma Viral , Guanidinas/uso terapéutico , Humanos , Inmunización Pasiva , Inmunosupresores/uso terapéutico , Medicina Tradicional China , Inhibidores de la Síntesis del Ácido Nucleico/uso terapéutico , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/complicaciones , Neumonía Viral/inmunología , Neumonía Viral/metabolismo , Inhibidores de Proteasas/uso terapéutico , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2 , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vacunas Virales , Internalización del Virus , Replicación Viral , Tratamiento Farmacológico de COVID-19 , Sueroterapia para COVID-19
9.
Phytomedicine ; 69: 153202, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32169782

RESUMEN

BACKGROUND: 7-Hydroxycoumarin (7-HC), also known as umbelliferon, is commonly found in Chinese herbs (e.g. Eucommiae Cortex, Prunellae Spica, Radix Angelicae Biseratae). Previous laboratory studies have indicated that 7-HC has anti-inflammatory, anti-oxidative, and anti-tumor effects. Cisplatin is a widely used chemotherapeutic agent for cancer. Nephrotoxicity is one of the limiting side effects of cisplatin use. PURPOSE: This study aimed to evaluate the renoprotective effect of 7-HC in a cisplatin-induced acute kidney injury (AKI) mouse model. METHODS: AKI was induced in male C57BL/6 mice (aged 6-8 weeks) by a single intraperitoneal injection of cisplatin at 20 mg/kg. The mice received 7-HC at 30, 60, and 90 mg/kg intraperitoneally before or after cisplatin administration. Renal function, necroptosis, and cell proliferation were measured. Mechanisms underlying the reno-protective effect of 7-HC were explored in renal tubular epithelial cells treated with or without cisplatin. RESULTS: In-vivo experiments showed that 7-HC significantly improved the loss in kidney function induced by cisplatin, as indicated by lower levels of serum creatinine and blood urea nitrogen, in AKI mice. Consistent herewith, cisplatin-induced tubular damage was alleviated by 7-HC as shown by morphological (periodic acid-Schiff staining) and kidney injury marker (KIM-1) analyses. We found that 7-HC suppressed renal necroptosis via the RIPK1/RIPK3/MLKL pathway and accelerated renal repair as evidenced by the upregulation of cyclin D1 in cisplatin-induced nephropathy. In-vitro experiments showed that knockdown of Sox9 attenuated the suppressive effect of 7-HC on KIM-1 and reversed the stimulatory effect of 7-HC on cyclin D1 expression in cisplatin-treated HK-2 cells, indicating that 7-HC may protect against AKI via a Sox9-dependent mechanism. CONCLUSION: 7-HC inhibits cisplatin-induced AKI by suppressing RIPK1/RIPK3/MLKL-mediated necroptosis and promoting Sox9-mediated tubular epithelial cell proliferation. 7-HC may serve as a preventive and therapeutic agent for AKI.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Cisplatino/efectos adversos , Riñón/efectos de los fármacos , Sustancias Protectoras/farmacología , Umbeliferonas/farmacología , Lesión Renal Aguda/tratamiento farmacológico , Animales , Antineoplásicos/efectos adversos , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Riñón/patología , Pruebas de Función Renal , Masculino , Ratones Endogámicos C57BL , Necroptosis/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo
10.
Int Immunopharmacol ; 75: 105671, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31377590

RESUMEN

Liver fibrosis is the representative features of liver chronic inflammation and the characteristic of early cirrhosis. To date, effective therapy for liver fibrosis is lacking. Recently, Traditional Chinese Medicine (TCM) has attracted increasing attention due to its wide pharmacological effects and more uses in clinical. Wogonin, as one major active constituent of Scutellaria radix, has been reported it plays an important role in anti-inflammatory, anti-cancer, anti-viral, anti-angiogenesis, anti-oxidant and neuro-protective effects. However, the anti-fibrotic effect of wogonin is never covered in liver. In this study, we evaluated the protect effect of wogonin in liver fibrosis. Wogonin significantly attenuated liver fibrosis both in CCl4-induced mice and TGF-ß1 activated HSCs. Meanwhile, wogonin can enhances apoptosis of TGF-ß1 activated HSC-T6 cell from rat and LX-2 cell from human detected by flow cytometry. Additionally, wogonin can largely enhances cle-caspase3, cle-caspase9 expression and the ratio of Bax/Bcl-2 in T6 cells. Pro-apoptosis effect of wogonin in vivo was further verified in situ. In conclusion, wogonin can attenuate liver fibrosis via regulating the activation and apoptosis of hepatic stellate cells, and may be an effective drug to treat and prevent liver fibrosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Flavanonas/uso terapéutico , Células Estrelladas Hepáticas/efectos de los fármacos , Cirrosis Hepática/tratamiento farmacológico , Animales , Tetracloruro de Carbono , Línea Celular , Flavanonas/farmacología , Humanos , Masculino , Ratones Endogámicos C57BL , Ratas , Factor de Crecimiento Transformador beta1
11.
Front Pharmacol ; 10: 376, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31057404

RESUMEN

Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid loss of renal function, which may further develop into chronic kidney damage (CKD) or even end-stage renal disease (ESRD). AKI is a global health problem associated with high morbidity and costly treatments, and there is no specific or effective strategy to treat AKI. In recent years, Traditional Chinese Medicine (TCM) has attracted more attention, with lines of evidence showing that application of TCM improved AKI, and the mechanisms of action for some TCMs have been well illustrated. However, reviews summarizing the progress in this field are still lacking. In this paper, we reviewed TCM preparations and TCM monomers in the treatment of AKI over the last 10 years, describing their renal protective effects and mechanisms of action, including alleviating inflammation, programmed cell death, necrosis, and reactive oxygen species. By focusing on the mechanisms of TCMs to improve renal function, we provide effective complementary evidence to promote the development of TCMs to treat AKI. Moreover, we also summarized TCMs with nephrotoxicity, which provides a more comprehensive understanding of TCMs in the treatment of AKI. This review may provide a theoretical basis for the clinical application of TCMs in the future.

12.
Chin J Nat Med ; 17(2): 122-130, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30797418

RESUMEN

Macrophages show significant heterogeneity in function and phenotype, which could shift into different populations of cells in response to exposure to various micro-environmental signals. These changes, also termed as macrophage polarization, of which play an important role in the pathogenesis of many diseases. Numerous studies have proved that Hesperidin (HDN), a traditional Chinese medicine, extracted from fruit peels of the genus citrus, play key roles in anti-inflammation, anti-tumor, anti-oxidant and so on. However, the role of HDN in macrophage polarization has never been reported. Additional, because of its poor water solubility and bioavailability. Our laboratory had synthesized many hesperidin derivatives. Among them, hesperidin derivatives-12 (HDND-12) has better water solubility and bioavailability. So, we evaluated the role of HDND-12 in macrophage polarization in the present study. The results showed that the expression of Arginase-1 (Arg-1), interleukin-10 (IL-10), transforming growth factor ß (TGF-ß) were up-regulated by HDND-12, whereas the expression of inducible Nitric Oxide Synthase (iNOS) was down-regulated in LPS- and IFN-γ-treated (M1) RAW264.7 cells. Moreover, the expression of p-JAK2 and p-STAT3 were significantly decreased after stimulation with HDND-12 in M1-like macrophages. More importantly, when we taken AG490 (inhibitor of JAK2/STAT3 signaling), the protein levels of iNOS were significantly reduced in AG490 stimulation group compare with control in LPS, IFN-γ and HDND-12 stimulation cells. Taken together, these findings indicated that HDND-12 could prevent polarization toward M1-like macrophages, at least in part, through modulating JAK2/STAT3 pathway.


Asunto(s)
Hesperidina/farmacología , Janus Quinasa 2/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Citocinas/genética , Citocinas/metabolismo , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hesperidina/química , Inflamación/genética , Inflamación/metabolismo , Janus Quinasa 2/antagonistas & inhibidores , Macrófagos/metabolismo , Medicina Tradicional China , Ratones , Estructura Molecular , Fosforilación/efectos de los fármacos , Células RAW 264.7 , Factor de Transcripción STAT3/antagonistas & inhibidores
13.
Clin Sci (Lond) ; 132(13): 1403-1415, 2018 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-29875262

RESUMEN

It is well established that Smad3 is a key downstream effector of transforming growth factor-ß (TGF-ß) signaling in tissue fibrogenesis. We reported here that targetting Smad3 specifically with a Smad3 inhibitor SIS3 is able to prevent or halt the progression of renal fibrosis in a mouse model of unilateral ureteral obstructive nephropathy (UUO). We found that preventive treatment with SIS3 at the time of disease induction largely suppressed progressive renal fibrosis by inhibiting α-smooth muscle actin (α-SMA) + myofibroblast accumulation and extracellular matrix (collagen I (Col.I) and fibronectin (FN)) production. Importantly, we also found that treatment with SIS3 on established mouse model of UUO from day 4 after UUO nephropathy halted the progression of renal fibrosis. Mechanistically, the preventive and therapeutic effects of SIS3 on renal fibrosis were associated with the inactivation of Smad3 signaling and inhibition of TGF-ß1 expression in the UUO kidney. In conclusion, results from the present study suggest that targetting Smad3 may be a specific and effective therapy for renal fibrosis.


Asunto(s)
Isoquinolinas/farmacología , Riñón/patología , Piridinas/farmacología , Pirroles/farmacología , Proteína smad3/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Fibrosis , Isoquinolinas/administración & dosificación , Isoquinolinas/uso terapéutico , Riñón/metabolismo , Masculino , Ratones Endogámicos C57BL , Piridinas/administración & dosificación , Piridinas/uso terapéutico , Pirroles/administración & dosificación , Pirroles/uso terapéutico , Transducción de Señal/efectos de los fármacos , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
14.
Fitoterapia ; 121: 212-222, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28774689

RESUMEN

A flavonoid hesperetin is reported to have a variety of biological activities, including anticancer, antiviral, antioxidant, neuroprotective and anti-inflammatory properties. Thirty-one novel hesperetin derivatives were designed, synthesized and evaluated for anti-inflammatory activity using RAW264.7 cells and CCl4-induced acute liver injury model. Among these compounds, 5b displayed the excellent anti-inflammatory activity on decreasing NO, IL-6 and TNF-α both in vitro and vivo. In addition, 5b could also reduce the release of NO, IL-6 and TNF-α production by LPS stimulated RAW 264.7 cell through MAPK and NF-κB signaling pathway in a concentration dependent manner. From in vivo study, it was also observed that 5b attenuated liver histopathologic changes in mouse models.


Asunto(s)
Antiinflamatorios/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Hesperidina/farmacología , Animales , Antiinflamatorios/síntesis química , Hesperidina/síntesis química , Interleucina-6/metabolismo , Hígado/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/metabolismo
15.
Int Immunopharmacol ; 50: 95-106, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28646664

RESUMEN

Alcoholic liver disease (ALD) is one of the predominant causes of liver-related morbidity and mortality worldwide. However, effective therapy for ALD is still lacking. Wogonin, a major flavonoid compound, is found in Scutellaria baicalensis Georgi. Accumulating studies have revealed that wogonin possesses anti-inflammatory and anti-tumour activities in various models. However, the hepatoprotective activity of wogonin in ALD is still obscure. In this study, we found that wogonin significantly attenuated inflammatory response in EtOH-fed mice, and reduced the expression of inflammatory cytokines such as TNF-α and IL-6 in EtOH-induced RAW264.7 cells. Furthermore, our findings showed that wogonin remarkably induced the expression of PPAR-γ in vivo and in vitro. Compared with the wogonin-treated group, blockade of PPAR-γ with inhibitor (T0070907) or PPAR-γ small interfering (si)-RNA were applied in RAW264.7 cells to evaluate the involvement of wogonin in alleviating EtOH-induced inflammation. Moreover, forced expression of PPAR-γ further suppressed the expression of TNF-α and IL-6 when treated with wogonin on EtOH-induced RAW264.7 cells. In addition, it was demonstrated that wogonin remarkably suppressed PPAR-γ-meditated phosphorylation and activation of NF-κB-P65. In conclusion, our results indicated that wogonin may serve as an effective modulator of PPAR-γ by down-regulating NF-κB pathway, thereby attenuated inflammatory response in ALD.


Asunto(s)
Antiinflamatorios/uso terapéutico , Flavanonas/uso terapéutico , Hepatopatías Alcohólicas/tratamiento farmacológico , PPAR gamma/metabolismo , Animales , Benzamidas/farmacología , Modelos Animales de Enfermedad , Etanol/administración & dosificación , Humanos , Inmunomodulación , Mediadores de Inflamación/metabolismo , Interleucina-6/metabolismo , Hepatopatías Alcohólicas/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , PPAR gamma/genética , Piridinas/farmacología , Células RAW 264.7 , ARN Interferente Pequeño/genética , Scutellaria baicalensis/inmunología , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
16.
Front Pharmacol ; 7: 479, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27999546

RESUMEN

Cisplatin is a classic chemotherapeutic agent widely used to treat different types of cancers including ovarian, head and neck, testicular and uterine cervical carcinomas. However, cisplatin induces acute kidney injury by directly triggering an excessive inflammatory response, oxidative stress, and programmed cell death of renal tubular epithelial cells, all of which lead to high mortality rates in patients. In this study, we examined the protective effect of protocatechuic aldehyde (PA) in vitro in cisplatin-treated tubular epithelial cells and in vivo in cisplatin nephropathy. PA is a monomer of Traditional Chinese Medicine isolated from the root of S. miltiorrhiza (Lamiaceae). Results show that PA prevented cisplatin-induced decline of renal function and histological damage, which was confirmed by attenuation of KIM1 in both mRNA and protein levels. Moreover, PA reduced renal inflammation by suppressing oxidative stress and programmed cell death in response to cisplatin, which was further evidenced by in vitro data. Of note, PA suppressed NAPDH oxidases, including Nox2 and Nox4, in a dosage-dependent manner. Moreover, silencing Nox4, but not Nox2, removed the inhibitory effect of PA on cisplatin-induced renal injury, indicating that Nox4 may play a pivotal role in mediating the protective effect of PA in cisplatin-induced acute kidney injury. Collectively, our data indicate that PA blocks cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation without compromising anti-tumor activity of cisplatin. These findings suggest that PA and its derivatives may serve as potential protective agents for cancer patients receiving cisplatin treatment.

17.
J Ethnopharmacol ; 193: 377-386, 2016 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-27566204

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Paeoniflorin(PF), extracted from the root peeled of Paeonia lactiflora Pall(Family: Ranunculaceae), has therapeutic potential in many animal models of inflammatory diseases. AIM OF THE STUDY: Although the anti-inflammatory efficacy of PF has been well illustrated in several animal models, whether it could attenuate diabetic nephropathy and detailed mechanisms are still obscure. Till now, accumulating evidence has proposed the pivotal role of toll-like receptors (TLRs) in renal inflammation in diabetic patients. In this setting, the current study aimed to investigate the effects and underlying mechanism of PF on high glucose-induced activation of toll like-receptor 2 (TLR2) signaling in macrophages. MATERIALS AND METHODS: Bone marrow-derived macrophages (BMDM) were isolated from male Tlr2tm1kir (TLR2-/-) mice and wild-type littermates (C57BL/6JWT). The level of TLR2 and activation of downstream signaling were evaluated in response to 30mmol/L high glucose (HG)-containing medium. Macrophages behaviors, which include cell viability, migration and inflammatory cytokines production, were also determined. RESULTS: PF suppressed HG-induced production of TLR2, activation of downstream signaling and synthesis of inducible nitric oxide synthase (iNOS). PF could further inhibit MyD88-dependent pathway in HG-induced models in which TLR2 was knocked out. Moreover, deletion of TLR2 inhibited the HG-induced activation of MyD88-dependent pathway, but not TIR domain containing adapter inducing interferon-ß (Trif) signal pathway in BMDMs. As HG stimulation polarizes macrophages into M1 phenotype, treatment of PF or knockout of TLR2 significantly reduces M1 markers on the membrane of macrophages. Additionally, levels of inflammatory cytokines and iNOS were remarkably reduced in response to PF or TLR2 deficiency. CONCLUSION: Collectively, these data demonstrated that HG activated macrophages primarily through TLR2-dependent mechanisms which aggravated the severity of renal inflammation and eventually contributed to DN. Additionally, PF might be applied as a potential therapeutic agent in the battle against progressive DN.


Asunto(s)
Antiinflamatorios/farmacología , Glucosa/farmacología , Glucósidos/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Monoterpenos/farmacología , Receptor Toll-Like 2/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fenotipo , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo
18.
Eur J Pharmacol ; 789: 134-143, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27397431

RESUMEN

Renal fibrosis, a common feature and leading cause for End Stage Renal Disease, still lacks effective therapy. In the current study, we detected and compared the anti-fibrotic effects of wogonin and wogonoside, two major components of Scutellaria baicalensis Georgi, in TGF-ß1-treated tubular epithelial cells of human and murine origins. Results consistently showed that compared with wogonoside, wogonin inhibits TGF-ß1-induced upregulated mRNA and protein levels of collagen I and α-SMA with more efficiency, which was further confirmed by the immunofluorescence results that wogonin decreased the percentage of collagen I and α-SMA positive cells in TGF-ß1-treated tubular epithelial cells. Mechanistically, wogonin mainly decreased Smad3 phosphorylation, but had marginal effect on non-canonical TGF-ß signaling pathways, such as p38 and ERK MAP Kinase. Furthermore, in the cells deficient for TGF-ß signaling or downstream Smad3, results demonstrated that even high concentration of wogonin failed to further decrease the level of collagen I and α-SMA, indicating the essential role of TGF-ß/Smad3 signaling inhibition in the therapeutic action of wogonin in TGF-ß1-stimulated tubular epithelial cells. Collectively, our results indicated that wogonin may be utilized as a potential anti-fibrotic Traditional Chinese Medicine monomer in the treatment of renal fibrosis.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Flavanonas/farmacología , Glucósidos/farmacología , Túbulos Renales Proximales/patología , Proteína smad3/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Relación Dosis-Respuesta a Droga , Células Epiteliales/metabolismo , Fibrosis , Flavanonas/uso terapéutico , Glucósidos/uso terapéutico , Humanos , Ratones , Fosforilación/efectos de los fármacos , Ratas , Receptores de Factores de Crecimiento Transformadores beta/deficiencia , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteína smad3/deficiencia , Factor de Crecimiento Transformador beta1/farmacología
19.
Oncotarget ; 6(35): 36984-97, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26474462

RESUMEN

We recently showed that imbalance of TGF-ß/Smad signaling with over-activation of Smad3 but lower levels of Smad7 is a central mechanism of tissue fibrosis. In the present study, we report here that inhibition of Smad3 with naringenin (NG) and upregulation of Smad7 with asiatic acid (AA) produced an additive effect on inhibition of renal fibrosis in a mouse model of obstructive nephropathy. We found that AA, a triterpene from Centella Asiatica, functioned as a Smad7 agonist and suppressed TGF-ß/Smad3-mediated renal fibrosis by inducing Smad7. Whereas, NG, a flavonoid from grapefruits and citrus fruits, was a Smad3 inhibitor that inhibited renal fibrosis by blocking Smad3 phosphorylation and transcription. The combination of AA and NG produced an additive effect on inhibition of renal fibrosis by blocking Smad3 while upregulating Smad7. Thus, rebalancing the disorder of TGF-ß/Smad signaling by treatment with AA and NG may represent as a novel and effective therapy for chronic kidney disease associated with fibrosis.


Asunto(s)
Fibrosis/tratamiento farmacológico , Flavanonas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Enfermedades Renales/tratamiento farmacológico , Triterpenos Pentacíclicos/farmacología , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Western Blotting , Quimioterapia Combinada , Antagonistas de Estrógenos/farmacología , Fibrosis/metabolismo , Fibrosis/patología , Técnicas para Inmunoenzimas , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Proteína smad3/genética , Factor de Crecimiento Transformador beta/genética
20.
Int Immunopharmacol ; 29(2): 739-747, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26371859

RESUMEN

Geniposide (GP), an iridoid glucoside extracted from Gardenia jasminoides Ellis fruits, has been used as a herbal medicine to treat liver and gall bladder disorders for many years. However the mechanism of anti-inflammatory is largely unknown. In this study, GP significantly attenuated inflammation in acute liver injury (ALI) mice model and in lipopolysaccharide (LPS)-induced THP-1 cells. It was demonstrated that GP obviously decreased the expression of Methyl-CpG binding protein 2 (MeCP2) in vivo and in vitro. Knockdown of MeCP2 with siRNA suppressed the expressions of IL-6 and TNF-α, while over-expression of MeCP2 had a proinflammatory effect on the expression of IL-6 and TNF-α in LPS-induced THP-1 cells. Mechanistically, it was indicated that GP had anti-inflammatory effects at least in part, through suppressing MeCP2. Interestingly, GP could attenuate expressions of Sonic hedgehog (Shh) and GLIS family zinc finger 1 (GLIS1) but increase Ptched1 (PTCH1) expression. Similar findings were also demonstrated at the protein level by siRNA MeCP2. Furthermore, over-expression of MeCP2 obviously increased Shh and GLIS1 expressions but reduced PTCH1 expression. Taken together, GP may serve as an effective modulator of MeCP2-hedgehog pathway (Hh)-axis during the pathogenesis of inflammation. Our findings shed light on the potential therapeutic feature of GP in recovering inflammatory diseases.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Intoxicación por Tetracloruro de Carbono/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Iridoides/farmacología , Proteína 2 de Unión a Metil-CpG/genética , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Intoxicación por Tetracloruro de Carbono/patología , Línea Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Proteínas Hedgehog/biosíntesis , Proteínas Hedgehog/genética , Interleucina-6/biosíntesis , Interleucina-6/genética , Iridoides/uso terapéutico , Hígado/patología , Proteína 2 de Unión a Metil-CpG/biosíntesis , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA