Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sci Total Environ ; 763: 143046, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33121767

RESUMEN

Alumina production waste (bauxite refining residue) is highly alkaline, saline, and sodic, and hence cannot support plant growth for revegetation. Gypsum (CaSO4.2H2O) amendment of bauxite residue can lower alkalinity and improve the residue Ca status, but given the large gypsum requirement, efficient gypsum use is imperative. We investigated gypsum amelioration of residue sand (RS), examining changes in RS chemistry, and growth of Rhodes grass (Chloris gayana). Furthermore, we examined whether gypsum amelioration of RS should occur before or after seawater neutralization. We found that Ca from gypsum (20 t ha-1) was retained within the surface 0.2 m of RS, regardless of whether the gypsum was applied before or after seawater neutralization. This Ca was retained both as exchangeable Ca and as a precipitate (either calcite or hydrotalcite), with ca. 50% retained as exchangeable Ca in both approaches. Gypsum at 20 t ha-1, or even lower, provided sufficient Ca for maximum growth of Rhodes grass, in the surface, but higher rates would be required to allow Ca movement down the Na-dominated profile to ameliorate a larger rooting depth - this being important in environments where there are prolonged periods of water stress. The information presented will guide the efficient use of gypsum to ameliorate bauxite refining wastes.


Asunto(s)
Óxido de Aluminio , Sulfato de Calcio , Desarrollo de la Planta , Agua de Mar , Suelo
2.
Ann Bot ; 125(5): 841-850, 2020 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-31838513

RESUMEN

BACKGROUND AND AIMS: Signal grass (Urochloa decumbens) is a widely used pasture grass in tropical and sub-tropical areas due to its high aluminiun (Al) resistance. However, the underlying mechanisms conferring this resistance are not clearly understood. METHODS: The Al concentrations of bulk root tissues and the intracellular compartment were examined, including the impact of a metabolic inhibitor, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Next, we examined changes in the properties of signal grass root tissues following exposure to toxic levels of Al, including the cell wall cation exchange capacity (CEC), degree of methylation and concentrations of cell wall fractions. KEY RESULTS: Although signal grass was highly resistant to Al, there was a delay of 24-48 h before the expression of this resistance. We found that this delay in the expression of Al resistance was not related to the total Al concentration in the bulk apical root tissues, nor was it related to changes in the Al bound to the cell wall. We also examined changes in other properties of the cell wall, including the CEC, degree of methylation and changes in the concentration of pectin, hemicellulose and cellulose. We noted that concentrations of intracellular Al decreased by approx. 50 % at the same time that the root elongation rate improved after 24-48 h. Using CCCP as a metabolic inhibitor, we found that the intracellular Al concentration increased approx. 14-fold and that the CCCP prevented the subsequent decrease in intracellular Al. CONCLUSIONS: Our results indicate that the delayed expression of Al resistance was not associated with the Al concentration in the bulk apical root tissues or bound to the cell wall, nor was it associated with changes in other properties of the cell wall. Rather, signal grass has an energy-dependent Al exclusion mechanism, and this mechanism requires 24-48 h to exclude Al from the intracellular compartment.


Asunto(s)
Raíces de Plantas , Poaceae , Aluminio , Pared Celular , Pectinas
3.
J Synchrotron Radiat ; 27(Pt 1): 100-109, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31868742

RESUMEN

Aluminium (Al) K- and L-edge X-ray absorption near-edge structure (XANES) has been used to examine Al speciation in minerals but it remains unclear whether it is suitable for in situ analyses of Al speciation within plants. The XANES analyses for nine standard compounds and root tissues from soybean (Glycine max), buckwheat (Fagopyrum tataricum), and Arabidopsis (Arabidopsis thaliana) were conducted in situ. It was found that K-edge XANES is suitable for differentiating between tetrahedral coordination (peak of 1566 eV) and octahedral coordination (peak of 1568 to 1571 eV) Al, but not suitable for separating Al binding to some of the common physiologically relevant compounds in plant tissues. The Al L-edge XANES, which is more sensitive to changes in the chemical environment, was then examined. However, the poorer detection limit for analyses prevented differentiation of the Al forms in the plant tissues because of their comparatively low Al concentration. Where forms of Al differ markedly, K-edge analyses are likely to be of value for the examination of Al speciation in plant tissues. However, the apparent inability of Al K-edge XANES to differentiate between some of the physiologically relevant forms of Al may potentially limit its application within plant tissues, as does the poorer sensitivity at the L-edge.


Asunto(s)
Compuestos de Aluminio/análisis , Raíces de Plantas/química , Espectroscopía de Absorción de Rayos X/métodos , Compuestos de Aluminio/toxicidad , Arabidopsis/química , Arabidopsis/efectos de los fármacos , Cristalización , Relación Dosis-Respuesta a Droga , Fagopyrum/química , Fagopyrum/efectos de los fármacos , Pectinas/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Plantones/química , Contaminantes del Suelo/toxicidad , Glycine max/química , Glycine max/efectos de los fármacos , Especificidad de la Especie , Sincrotrones
4.
Glob Chang Biol ; 23(6): 2509-2519, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27670741

RESUMEN

Quantifying changes in stocks of C, N, P, and S in agricultural soils is important not only for managing these soils sustainably as required to feed a growing human population, but for C and N, they are also important for understanding fluxes of greenhouse gases from the soil environment. In a global meta-analysis, 102 studies were examined to investigate changes in soil stocks of organic C, total N, total P, and total S associated with long-term land-use changes. Conversion of native vegetation to cropping resulted in substantial losses of C (-1.6 kg m-2 , -43%), N (-0.15 kg m-2 , -42%), P (-0.029 kg m-2 , -27%), and S (-0.015 kg m-2 , -33%). The subsequent conversion of conventional cropping systems to no-till, organic agriculture, or organic amendment systems subsequently increased stocks, but the magnitude of this increase (average of +0.47 kg m-2 for C and +0.051 kg m-2 for N) was small relative to the initial decrease. We also examined the conversion of native vegetation to pasture, with changes in C (-11%), N (+4.1%), and P (+25%) generally being modest relative to changes caused by conversion to cropping. The C:N ratio remained relatively constant irrespective of changes in land use, whilst in contrast, the C:S ratio decreased by 21% in soils converted to cropping - this suggesting that biochemical mineralization is of importance for S. The data presented here will assist in the assessment of different agricultural production systems on soil stocks of C, N, P, and S - this information assisting not only in quantifying the effects of existing agricultural production on these stocks, but also allowing for informed decision-making regarding the potential effects of future land-use changes.


Asunto(s)
Agricultura , Carbono , Nitrógeno , Fósforo , Suelo/química , Azufre , Toma de Decisiones , Monitoreo del Ambiente
5.
Physiol Plant ; 158(4): 382-388, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27213484

RESUMEN

Aluminium (Al) toxicity adversely impacts plant productivity in acid soils by restricting root growth and although several mechanisms are involved the physiological basis of decreased root elongation remains unclear. Understanding the primary mechanisms of Al rhizotoxicity is hindered due to the rapid effects of soluble Al on root growth and the close proximity of many cellular components within the cell wall, plasma membrane, cytosol and nucleus with which Al may react. To overcome some of these difficulties, we report on a novel method for investigating Al interactions with Komagataeibacter xylinus bacterial cellulose (BC)-pectin composites as cell wall analogues. The growth of K. xylinus in the presence of various plant cell wall polysaccharides, such as pectin, has provided a unique in vitro model system with which to investigate the interactions of Al with plant cell wall polysaccharides. The BC-pectin composites reacted in a similar way with Al as do plant cell walls, providing insights into the effects of Al on the mechanical properties of the BC-pectin composites as cell wall analogues. Our findings indicated that there were no significant effects of Al (4-160 µM) on the tensile stress, tensile strain or Young's modulus of the composites. This finding was consistent with cellulose, not pectin, being the major load bearing component in BC-pectin composites, as is also the case in plant cell walls.


Asunto(s)
Aluminio/farmacología , Pared Celular/efectos de los fármacos , Resistencia a la Tracción/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Celulosa/metabolismo , Gluconacetobacter xylinus/metabolismo , Técnicas In Vitro , Pectinas/metabolismo , Raíces de Plantas/efectos de los fármacos
6.
J Exp Bot ; 66(15): 4795-806, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26019258

RESUMEN

Knowledge of the distribution of selenium (Se) species within plant tissues will assist in understanding the mechanisms of Se uptake and translocation, but in situ analysis of fresh and highly hydrated plant tissues is challenging. Using synchrotron-based fluorescence X-ray absorption near-edge spectroscopy (XANES) imaging to provide laterally resolved data, the speciation of Se in fresh roots and leaves of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) supplied with 1 µM of either selenate or selenite was investigated. For plant roots exposed to selenate, the majority of the Se was efficiently converted to C-Se-C compounds (i.e. methylselenocysteine or selenomethionine) as selenate was transported radially through the root cylinder. Indeed, even in the rhizodermis which is exposed directly to the bulk solution, only 12-31% of the Se was present as uncomplexed selenate. The C-Se-C compounds were probably sequestered within the roots, whilst much of the remaining uncomplexed Se was translocated to the leaves-selenate accounting for 52-56% of the total Se in the leaves. In a similar manner, for plants exposed to selenite, the Se was efficiently converted to C-Se-C compounds within the roots, with only a small proportion of uncomplexed selenite observed within the outer root tissues. This resulted in a substantial decrease in translocation of Se from the roots to leaves of selenite-exposed plants. This study provides important information for understanding the mechanisms responsible for the uptake and subsequent transformation of Se in plants.


Asunto(s)
Botánica/métodos , Oryza/metabolismo , Selenio/metabolismo , Espectrometría por Rayos X , Triticum/metabolismo , Espectroscopía de Absorción de Rayos X , Transporte Biológico , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Ácido Selénico/metabolismo , Ácido Selenioso/metabolismo , Sincrotrones
7.
Plant Physiol ; 163(1): 407-18, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23835408

RESUMEN

The speciation and spatial distribution of selenium (Se) in hydrated plant tissues is not well understood. Using synchrotron-based x-ray absorption spectroscopy and x-ray fluorescence microscopy (two-dimensional scanning [and associated mathematical model] and computed tomography), the speciation and distribution of toxic Se were examined within hydrated roots of cowpea (Vigna unguiculata) exposed to either 20 µM selenite or selenate. Based upon bulk solution concentrations, selenate was 9-fold more toxic to the roots than selenite, most likely due to increased accumulation of organoselenium (e.g. selenomethionine) in selenate-treated roots. Specifically, uptake of selenate (probably by sulfate transporters) occurred at a much higher rate than for selenite (apparently by both passive diffusion and phosphate transporters), with bulk root tissue Se concentrations approximately 18-fold higher in the selenate treatment. Although the proportion of Se converted to organic forms was higher for selenite (100%) than for selenate (26%), the absolute concentration of organoselenium was actually approximately 5-fold higher for selenate-treated roots. In addition, the longitudinal and radial distribution of Se in roots differed markedly: the highest tissue concentrations were in the endodermis and cortex approximately 4 mm or more behind the apex when exposed to selenate but in the meristem (approximately 1 mm from the apex) when exposed to selenite. The examination of the distribution and speciation of Se in hydrated roots provides valuable data in understanding Se uptake, transport, and toxicity.


Asunto(s)
Fabaceae/metabolismo , Selenio/metabolismo , Contaminantes del Suelo/metabolismo , Absorción , Raíces de Plantas/metabolismo , Selenio/química , Contaminantes del Suelo/química , Agua/metabolismo
8.
Sci Total Environ ; 463-464: 131-9, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23792255

RESUMEN

Many metals and metalloids, jointly termed metal(loid)s, are toxic to plants even at low levels. This has limited the study of their uptake, distribution, and modes of action in plant roots grown at physiologically relevant concentrations. Synchrotron-based X-ray fluorescence microscopy was used to examine metal(loid)s in hydrated cowpea (Vigna unguiculata L.) roots exposed to Zn(II), Ni(II), Mn(II), Cu(II), Hg(II), Se(IV), Se(VI), As(III), or As(V). Development of a mathematical model enabled in situ quantitative determination of their distribution in root tissues. The binding strength of metals influenced the extent of their movement through the root cylinder, which influenced the toxic effects exerted-metals (e.g. Cu, Hg) that bind more strongly to hard ligands had high concentrations in the rhizodermis and caused this tissue to rupture, while other metals (e.g. Ni, Zn) moved further into the root cylinder and did not cause ruptures. When longitudinal distributions were examined, the highest Se concentration in roots exposed to Se(VI) was in the more proximal root tissues, suggesting that Se(VI) is readily loaded into the stele. This contrasted with other metal(loid)s (e.g. Mn, As), which accumulated in the apex. These differences in metal(loid) spatial distribution provide valuable quantitative data on metal(loid) physiology, including uptake, transport, and toxicity in plant roots.


Asunto(s)
Fabaceae/química , Metaloides/análisis , Metales/análisis , Raíces de Plantas/química , Arsénico/análisis , Cobre/análisis , Microanálisis por Sonda Electrónica , Manganeso/análisis , Mercurio/análisis , Microscopía Fluorescente , Níquel/análisis , Selenio/análisis , Zinc/análisis
9.
Carbohydr Res ; 345(9): 1174-9, 2010 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-20457449

RESUMEN

Rheology of Ca-pectate gels is widely studied, but the behaviour of pectate gels formed by Cu, Al and La is largely unknown. It is well known that gel strength increases with increasing Ca concentration, and it is hypothesised that this would also be the case for other cations. Pectins are a critical component of plant cell walls, imparting various physicochemical properties. Furthermore, the mechanism of metal toxicity in plants is hypothesised to be, in the short term, related to metal interactions with cell wall pectin. This study investigated the influence of Ca, Cu, Al and La ion concentrations at pH 4 on the storage modulus as a function of frequency for metal-pectin gels prepared from pectin (1%) with a degree of esterification of 30%. Gels were formed in situ over 6d in metal chloride solution adjusted daily to pH 4. Cation concentration was varied to develop a relationship between gel strength and cation concentration. At similar levels of cation saturation, gel strength increased in the order of La

Asunto(s)
Pared Celular/química , Pared Celular/efectos de los fármacos , Metales/farmacología , Pectinas/química , Células Vegetales , Aluminio/farmacología , Aluminio/toxicidad , Calcio/farmacología , Calcio/toxicidad , Cobre/farmacología , Cobre/toxicidad , Relación Dosis-Respuesta a Droga , Geles , Concentración de Iones de Hidrógeno , Lantano/farmacología , Lantano/toxicidad , Metales/toxicidad , Concentración Osmolar , Plantas/efectos de los fármacos , Reología , Suelo , Soluciones
10.
Physiol Plant ; 138(2): 205-14, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20053181

RESUMEN

Low concentrations of some trace metals markedly reduce root elongation rate and cause ruptures to root rhizodermal and outer cortical cells in the elongation zone. The interactions between the trace metals and plant components responsible for these effects are not well understood but may be linked to changes in water uptake, cell turgor and cell wall extensibility. An experiment was conducted to investigate the effects of Al, La, Cu, Gd, Sc and Ru on the saturated hydraulic conductivity of bacterial cellulose (BC)-pectin composites, used as plant cell wall analogs. Hydraulic conductivity was reduced to approximately 30% of the initial flow rate by 39 microM Al and 0.6 microM Cu, approximately 40% by 4.6 microM La, 3 microM Sc and 4.4 microM Ru and approximately 55% by 3.4 microM Gd. Scanning electron microscopy (SEM) revealed changes in the ultrastructure of the composites. The results suggest that trace metal binding decreases the hydraulic conductivity through changes in pectin porosity. The experiment illustrates the importance of metal interactions with pectin, and the implications of such an interaction in plant metal toxicity and in normal cell wall processes.


Asunto(s)
Celulosa/química , Celulosa/ultraestructura , Metales/química , Pectinas/química , Pectinas/ultraestructura , Agua/metabolismo , Pared Celular/ultraestructura , Gluconacetobacter xylinus/metabolismo , Microscopía Electrónica de Rastreo , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo
11.
J Environ Qual ; 38(5): 2050-7, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19704148

RESUMEN

Processing of bauxite to extract alumina produces a strongly alkaline waste, bauxite refining residue, which is commonly stored in engineered structures. Once full, these waste dumps must be revegetated. In many alumina refineries, the waste is separated into fine-textured red mud and coarse-textured residue sand (RS). The sand component has physical characteristics that make it a suitable plant growth medium, provided the adverse chemical characteristics can be addressed. Neutralization of the highly saline-sodic RS with sea water lowers pH, reduces Na saturation, and adds plant nutrients. However, sea water-neutralized RS remains saline sodic and needs fresh water leaching before use as a plant growth medium. Columns containing sea water-neutralized RS were leached with 30 m depth-equivalent of fresh water to evaluate the effects of rainfall on the RS and its leachate. Entrained cations were rapidly displaced by the fresh water, lowering salinity to non-plant-limiting levels (< or =0.3 dS m(-1)). The percentage of the effective cation exchange capacity (ECEC) saturated by Na decreased from 71 to 62% due to a reduction in soil solution ionic strength (causing a decrease in the ECEC) and the preferential displacement of Na(+) (and K(+)) from the exchange. Fresh water leaching increased pH (leachate pH increased from 8.0 to 10.1). This pH increase is attributed to the slow dissolution of the Na-containing mineral sodalite. Under the current experimental conditions, the application of 30 m depth-equivalent of leaching reduced the total RS sodalite content by <10%.


Asunto(s)
Óxido de Aluminio/química , Agua Dulce/química , Agua de Mar/química , Calcio/análisis , Conductividad Eléctrica , Restauración y Remediación Ambiental , Concentración de Iones de Hidrógeno , Concentración Osmolar , Potasio/análisis , Dióxido de Silicio/química , Sodio/análisis , Suelo , Purificación del Agua
12.
Environ Manage ; 37(3): 297-306, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16456629

RESUMEN

Alumina extraction from bauxite ore with strong alkali produces waste bauxite refinery residue consisting of residue sand and red mud. The amount and composition of refinery residue depend on the purity of the bauxite ore and extraction conditions, and differs between refineries. The refinery residue is usually stored in engineered disposal areas that eventually have to be revegetated. This is challenging because of the alkaline and sodic nature of the residue. At Alcan Gove's bauxite refinery in Gove, Northern Territory, Australia, research into revegetation of bauxite residue has been conducted since the mid-1970s. In this review, we discuss approaches taken by Alcan Gove to achieve revegetation outcomes (soil capping of refinery residue) on wet-slurry disposal areas. Problems encountered in the past include poor drainage and water logging during the wet season, and salt scalding and capillary rise during the dry season. The amount of available water in the soil capping is the most important determinant of vegetation survival in the seasonally dry climate. Vegetation cover was found to prevent deterioration of the soil cover by minimising capillary rise of alkalinity from the refinery residue. The sodicity and alkalinity of the residue in old impoundments has diminished slightly over the 25 years since it was deposited. However, development of a blocky structure in red mud, presumably due to desiccation, allows root penetration, thereby supplying additional water to salt and alkali-tolerant plant species. This has led to the establishment of an ecosystem that approaches a native woodland.


Asunto(s)
Minería , Desarrollo de la Planta , Eliminación de Residuos , Aluminio , Óxido de Aluminio , Conservación de los Recursos Naturales , Northern Territory , Estaciones del Año , Suelo , Agua
13.
Plant Physiol Biochem ; 42(6): 485-92, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15246061

RESUMEN

Modification of cell wall components such as cellulose, hemicellulose and pectin plays an important role in cell expansion. Cell expansion is known to be diminished by cations but it is unknown if this results from cations reacting with pectin or other cell wall components. Autolysis of cell wall material purified from bean root (Phaseolus vulgaris L.) occurred optimally at pH 5.0 and released mainly neutral sugars but very little uronic acid. Autolytic release of neutral sugars and uronic acid was decreased when cell wall material was loaded with Ca, Cu, Sr, Zn, Al or La cations. Results were also extended to a metal-pectate model system, which behaved similarly to cell walls and these cations also inhibited the enzymatic degradation by added polygalacturonase (EC 3.2.1.15). The extent of sugar release from cation-loaded cell wall material and pectate gels was related to the degree of cation saturation of the substrate, but not to the type of cation. The binding strength of the cations was assessed by their influence on the buffer capacity of the cell wall and pectate. The strongly bound cations (Cu, Al or La) resulted in higher cation saturation of the substrate and decreased enzymatic degradability than the weakly held cations (Ca, Sr and Zn). The results indicate that the junction zones between pectin molecules can peel open with weakly held cations, allowing polygalacturonase to cleave the hairy region of pectin, while strongly bound cations or high concentrations of cations force the junction zone closed, minimising enzymatic attack on the pectin backbone.


Asunto(s)
Cationes/farmacología , Pared Celular/enzimología , Pectinas/metabolismo , Phaseolus/enzimología , Pared Celular/efectos de los fármacos , Cinética , Phaseolus/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Poligalacturonasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA