Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Tradicionales
Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1125378, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36938018

RESUMEN

Background: Understanding the complex regulatory network underlying plant nitrogen (N) responses associated with high Nitrogen Use Efficiency (NUE) is one of the main challenges for sustainable cropping systems. Nitrate (NO3 -), acting as both an N source and a signal molecule, provokes very fast transcriptome reprogramming, allowing plants to adapt to its availability. These changes are genotype- and tissue-specific; thus, the comparison between contrasting genotypes is crucial to uncovering high NUE mechanisms. Methods: Here, we compared, for the first time, the spatio-temporal transcriptome changes in both root and shoot of two NUE contrasting tomato genotypes, Regina Ostuni (high-NUE) and UC82 (low-NUE), in response to short-term (within 24 h) low (LN) and high (HN) NO3 - resupply. Results: Using time-series transcriptome data (0, 8, and 24 h), we identified 395 and 482 N-responsive genes differentially expressed (DEGs) between RO and UC82 in shoot and root, respectively. Protein kinase signaling plant hormone signal transduction, and phenylpropanoid biosynthesis were the main enriched metabolic pathways in shoot and root, respectively, and were upregulated in RO compared to UC82. Interestingly, several N transporters belonging to NRT and NPF families, such as NRT2.3, NRT2.4, NPF1.2, and NPF8.3, were found differentially expressed between RO and UC82 genotypes, which might explain the contrasting NUE performances. Transcription factors (TFs) belonging to several families, such as ERF, LOB, GLK, NFYB, ARF, Zinc-finger, and MYB, were differentially expressed between genotypes in response to LN. A complementary Weighted Gene Co-expression Network Analysis (WGCNA) allowed the identification of LN-responsive co-expression modules in RO shoot and root. The regulatory network analysis revealed candidate genes that might have key functions in short-term LN regulation. In particular, an asparagine synthetase (ASNS), a CBL-interacting serine/threonine-protein kinase 1 (CIPK1), a cytokinin riboside 5'-monophosphate phosphoribohydrolase (LOG8), a glycosyltransferase (UGT73C4), and an ERF2 were identified in the shoot, while an LRR receptor-like serine/threonine-protein kinase (FEI1) and two TFs NF-YB5 and LOB37 were identified in the root. Discussion: Our results revealed potential candidate genes that independently and/or concurrently may regulate short-term low-N response, suggesting a key role played by cytokinin and ROS balancing in early LN regulation mechanisms adopted by the N-use efficient genotype RO.

2.
Cells ; 11(7)2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35406664

RESUMEN

Onion (Allium cepa L.) is an important bulb crop grown worldwide. Dormancy in bulbous plants is an important physiological state mainly regulated by a complex gene network that determines a stop of vegetative growth during unfavorable seasons. Limited knowledge on the molecular mechanisms that regulate dormancy in onion were available until now. Here, a comparison between uninfected and onion yellow dwarf virus (OYDV)-infected onion bulbs highlighted an altered dormancy in the virus-infected plants, causing several symptoms, such as leaf striping, growth reduction, early bulb sprouting and rooting, as well as a lower abscisic acid (ABA) level at the start of dormancy. Furthermore, by comparing three dormancy stages, almost five thousand four hundred (5390) differentially expressed genes (DEGs) were found in uninfected bulbs, while the number of DEGs was significantly reduced (1322) in OYDV-infected bulbs. Genes involved in cell wall modification, proteolysis, and hormone signaling, such as ABA, gibberellins (GAs), indole-3-acetic acid (IAA), and brassinosteroids (BRs), that have already been reported as key dormancy-related pathways, were the most enriched ones in the healthy plants. Interestingly, several transcription factors (TFs) were up-regulated in the uninfected bulbs, among them three genes belonging to the WRKY family, for the first time characterized in onion, were identified during dormancy release. The involvement of specific WRKY genes in breaking dormancy in onion was confirmed by GO enrichment and network analysis, highlighting a correlation between AcWRKY32 and genes driving plant development, cell wall modification, and division via gibberellin and auxin homeostasis, two key processes in dormancy release. Overall, we present, for the first time, a detailed molecular analysis of the dormancy process, a description of the WRKY-TF family in onion, providing a better understanding of the role played by AcWRKY32 in the bulb dormancy release. The TF co-expressed genes may represent targets for controlling the early sprouting in onion, laying the foundations for novel breeding programs to improve shelf life and reduce postharvest.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Cebollas , Ácido Abscísico/metabolismo , Redes Reguladoras de Genes , Giberelinas/metabolismo , Cebollas/genética , Cebollas/metabolismo , Potyvirus
3.
Sci Rep ; 9(1): 10411, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31320697

RESUMEN

Caper (Capparis spinosa L.) is a xerophytic shrub cultivated for its flower buds and fruits, used as food and for their medicinal properties. Breeding programs and even proper taxonomic classification of the genus Capparis has been hampered so far by the lack of reliable genetic information and molecular markers. Here, we present the first genomic resource for C. spinosa, generated by transcriptomic approach and de novo assembly. The sequencing effort produced nearly 80 million clean reads assembled into 124,723 unitranscripts. Careful annotation and comparison with public databases revealed homologs to genes with a key role in important metabolic pathways linked to abiotic stress tolerance and bio-compounds production, such purine, thiamine and phenylpropanoid biosynthesis, α-linolenic acid and lipid metabolism. Additionally, a panel of genes involved in stomatal development/distribution and encoding for Stress Associated Proteins (SAPs) was also identified. We also used the transcriptomic data to uncover novel molecular markers for caper. Out of 50 SSRs tested, 14 proved polymorphic and represent the first set of SSR markers for the genus Capparis. This transcriptome will be an important contribution to future studies and breeding programs for this orphan crop, aiding to the development of improved varieties to sustain agriculture in arid conditions.


Asunto(s)
Capparis/genética , Plantas Medicinales/genética , Transcriptoma/genética , Biomarcadores/metabolismo , Capparis/metabolismo , Sequías , Perfilación de la Expresión Génica/métodos , Redes y Vías Metabólicas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
4.
BMC Plant Biol ; 19(1): 7, 2019 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-30612542

RESUMEN

BACKGROUND: Magna Graecia is the ancient name for the modern geopolitical region of South Italy extensively populated by Greek colonizers, shown by archeological and historical evidence to be the oldest wine growing region of Italy, crucial for the spread of specialized viticulture around Mediterranean shores. Here, the genetic diversity of Magna Graecia grape germplasm was assessed and its role in grapevine propagation around the Mediterranean basin was underlined. RESULTS: A large collection of grapevines from Magna Graecia was compared with germplasm from Georgia to the Iberian Peninsula using the 18 K SNP array. A high level of genetic diversity of the analyzed germplasm was determined; clustering, structure analysis and DAPC (Discriminant Analysis of Principal Components) highlighted the genetic relationships among genotypes from South Italy and the Eastern Mediterranean (Greece). Gene flow from east (Georgia) to west (Iberian Peninsula) was identified throughout the large number of detected admixed samples. Pedigree analysis showed a complex and well-structured network of first degree relationships, where the cultivars from Magna Graecia were mainly involved. CONCLUSIONS: This study provided evidence that Magna Graecia germplasm was shaped by historical events that occurred in the area due to the robust link between South Italian and Greek genotypes, as well as, by the availability of different thermal resources for cultivars growing in such different winegrowing areas. The uniqueness of this ampelographic platform was mainly an outcome of complex natural or human-driven crosses involving elite cultivars.


Asunto(s)
Variación Genética/genética , Polimorfismo de Nucleótido Simple/genética , Vitis/genética , Producción de Cultivos/historia , ADN de Plantas/genética , Genotipo , Técnicas de Genotipaje , Georgia (República) , Grecia , Historia Antigua , Italia , Región Mediterránea , Linaje , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA