Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytochemistry ; 216: 113883, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37820888

RESUMEN

Crinum x powellii 'Album' belongs to the Amaryllidaceae medicinal plant family that produces a range of structurally diverse alkaloids with potential therapeutic properties. The optimal conditions for in vitro tissue growth, morphogenesis, and alkaloid biosynthesis remain unclear. Auxin and light play critical roles in regulating plant growth, development, and alkaloid biosynthesis in several Amaryllidaceae plants. Here, we have succeeded in showing, for the first time, that the combination of auxin and light significantly influence C. x powellii "Album" in vitro tissue growth, survival, and morphogenesis compared to individual treatments. Furthermore, this combination also upregulates the expression of alkaloid biosynthetic genes and led to an increase in the content of certain alkaloids, suggesting a positive impact on the defense and therapeutic potential of the calli. Our findings provide insights into the regulation of genes involved in alkaloid biosynthesis in C. x powellii "Album" callus and underline the potential of auxin and light as tools for enhancing their production in plants. This study provides a foundation for further exploration of C. x powellii "Album" calli as a sustainable source of bioactive alkaloids for pharmaceutical and agricultural applications. Furthermore, this study paves the way to the discovery of the biosynthetic pathway of specialized metabolites from C. x powellii "Album", such as cherylline and lycorine.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Crinum , Crinum/metabolismo , Ácidos Indolacéticos , Alcaloides de Amaryllidaceae/farmacología , Alcaloides/metabolismo , Extractos Vegetales , Morfogénesis
3.
Toxins (Basel) ; 14(4)2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35448871

RESUMEN

Ten Amaryllidaceae alkaloids (AAs) were isolated for the first time from Pancratium maritimum collected in Calabria region, Italy. They belong to different subgroups of this family and were identified as lycorine, which is the main alkaloid, 9-O-demethyllycorine, haemanthidine, haemanthamine, 11-hydroxyvittatine, homolycorine, pancracine, obliquine, tazettine and vittatine. Haemanthidine was isolated as a scalar mixture of two 6-epimers, as already known also for other 6-hydroxycrinine alkaloids, but for the first time they were separated as 6,11-O,O'-di-p-bromobenzoyl esters. The evaluation of the cytotoxic and antiviral potentials of all isolated compounds was undertaken. Lycorine and haemanthidine showed cytotoxic activity on Hacat cells and A431 and AGS cancer cells while, pancracine exhibited selective cytotoxicity against A431 cells. We uncovered that in addition to lycorine and haemanthidine, haemanthamine and pancracine also possess antiretroviral abilities, inhibiting pseudotyped human immunodeficiency virus (HIV)−1 with EC50 of 25.3 µM and 18.5 µM respectively. Strikingly, all the AAs isolated from P. maritimum were able to impede dengue virus (DENV) replication (EC50 ranged from 0.34−73.59 µM) at low to non-cytotoxic concentrations (CC50 ranged from 6.25 µM to >100 µM). Haemanthamine (EC50 = 337 nM), pancracine (EC50 = 357 nM) and haemanthidine (EC50 = 476 nM) were the most potent anti-DENV inhibitors. Thus, this study uncovered new antiviral properties of P. maritimum isolated alkaloids, a significant finding that could lead to the development of new therapeutic strategies to fight viral infectious diseases.


Asunto(s)
Alcaloides , Antivirales , Alcaloides/farmacología , Antivirales/farmacología , Humanos , Italia , Extractos Vegetales/farmacología
4.
Molecules ; 26(23)2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34885964

RESUMEN

Amaryllidaceae plants are rich in alkaloids with biological properties. Pancratium trianthum is an Amaryllidaceae species widely used in African folk medicine to treat several diseases such as central nervous system disorders, tumors, and microbial infections, and it is used to heal wounds. The current investigation explored the biological properties of alkaloid extracts from bulbs of P. trianthum collected in the Senegalese flora. Alkaloid extracts were analyzed and identified by chromatography and mass spectrometry. Alkaloid extracts from P. trianthum displayed pleiotropic biological properties. Cytotoxic activity of the extracts was determined on hepatocarcinoma Huh7 cells and on acute monocytic leukemia THP-1 cells, while agar diffusion and microdilution assays were used to evaluate antibacterial activity. Antiviral activity was measured by infection of extract-treated cells with dengue virus (DENVGFP) and human immunodeficiency virus-1 (HIV-1GFP) reporter vectors. Cytotoxicity and viral inhibition were the most striking of P. trianthum's extract activities. Importantly, non-cytotoxic concentrations were highly effective in completely preventing DENVGFP replication and in reducing pseudotyped HIV-1GFP infection levels. Our results show that P. trianthum is a rich source of molecules for the potential discovery of new treatments against various diseases. Herein, we provide scientific evidence to rationalize the traditional uses of P. trianthum for wound treatment as an anti-dermatosis and antiseptic agent.


Asunto(s)
Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/farmacología , Amaryllidaceae/química , Antineoplásicos/química , Antineoplásicos/farmacología , Antivirales/química , Antivirales/farmacología , Línea Celular Tumoral , Dengue/tratamiento farmacológico , Virus del Dengue/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología
5.
Biomolecules ; 11(9)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34572511

RESUMEN

Crinum biflorum Rottb. (syn. Crinum distichum) is an Amaryllidaceae plant used in African traditional medicine but very few studies have been performed on this species from a chemical and applicative point of view. Bulbs of C. biflorum, collected in Senegal, were extracted with ethanol by Soxhlet and the corresponding organic extract was purified using chromatographic methods. The pure compounds were chemically characterized by spectroscopic techniques (1D and 2D 1H and 13C NMR, HR MS and ECD) and X-ray analysis. Four homoisoflavonoids (1-4) and one alkylamide (5) were isolated and characterized as 5,6,7-trimethoxy-3-(4-hydroxybenzyl)chroman-4-one (1), as 3-hydroxy-5,6,7-trimethoxy-3-(4-hydroxybenzyl)chroman-4-one (2), as 3-hydroxy-5,6,7-trimethoxy-3-(4-methoxybenzyl)chroman-4-one (3) and as 5,6,7-trimethoxy-3-(4-methoxybenzyl)chroman-4-one (4), and the alkylamide as (E)-N-(4-hydroxyphenethyl)-3-(4-hydroxyphenyl)acrylamide (5), commonly named N-p-coumaroyltyramine. The relative configuration of compound 1 was verified thanks to the X-ray analysis which also allowed us to confirm its racemic nature. The absolute configurations of compounds 2 and 3 were assigned by comparing their ECD spectra with those previously reported for urgineanins A and B. Flavanoids 1, 3 and 4 showed promising anticancer properties being cytotoxic at low micromolar concentrations towards HeLa and A431 human cancer cell lines. The N-p-coumaroyltyramine (5) was selectively toxic to A431 and HeLa cancer cells while it protected immortalized HaCaT cells against oxidative stress induced by hydrogen peroxide. Compounds 1-4 also inhibited acetylcholinesterase activity with compound 3 being the most potent. The anti-amylase and the strong anti-glucosidase activity of compound 5 were confirmed. Our results show that C. biflorum produces compounds of therapeutic interest with anti-diabetic, anti-tumoral and anti-acetylcholinesterase properties.


Asunto(s)
Amaryllidaceae/química , Ácidos Cumáricos/aislamiento & purificación , Crinum/química , Flavonoides/aislamiento & purificación , Acetilcolinesterasa/metabolismo , Antivirales/farmacología , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Inhibidores de la Colinesterasa/farmacología , Ácidos Cumáricos/química , Flavonoides/química , Fluoresceínas/metabolismo , VIH-1/efectos de los fármacos , Células HaCaT , Células HeLa , Humanos , Hipoglucemiantes/farmacología , Metaboloma , Conformación Molecular , Senegal , alfa-Amilasas/metabolismo
6.
J Leukoc Biol ; 90(1): 49-60, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21367975

RESUMEN

UCBT has been used for almost 25 years to treat a variety of malignant and nonmalignant childhood diseases. The biological properties of NK cells and T cells and their implication in engraftment, immune reconstitution, OIs, leukemic relapse, and GvHD have been explored in the context of UCBT. These studies have established that lymphocytes have a major impact on the outcome of UCBT and that NK cells and T cells play complementary and contrasting roles in immune reconstitution and the GvL effect. Therefore, novel strategies to improve the outcome of UCBT recipients, including immunotherapeutic regimens, should be based on key immunologic features of UCB T lymphocytes and NK cells.


Asunto(s)
Trasplante de Células Madre de Sangre del Cordón Umbilical , Células Asesinas Naturales/inmunología , Linfocitos T/inmunología , Niño , Enfermedad Injerto contra Huésped/inmunología , Humanos , Células Asesinas Naturales/citología , Linfocitos T/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA