Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nutrients ; 15(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37242140

RESUMEN

Vanillic acid (VA) has shown antioxidant and anti-inflammatory activities in different cell types, but its biological effects in the context of early embryo development have not yet been clarified. In the current study, the impact of VA supplementation during in vitro maturation (IVM) and/or post-fertilization (in vitro culture; IVC) on redox homeostasis, mitochondrial function, AKT signaling, developmental competence, and the quality of bovine pre-implantation embryos was investigated. The results showed that dual exposure to VA during IVM and late embryo culture (IVC3) significantly improved the blastocyst development rate, reduced oxidative stress, and promoted fatty acid oxidation as well as mitochondrial activity. Additionally, the total numbers of cells and trophectoderm cells per blastocyst were higher in the VA-treated group compared to control (p < 0.05). The RT-qPCR results showed down-regulation of the mRNA of the apoptosis-specific markers and up-regulation of AKT2 and the redox homeostasis-related gene TXN in the treated group. Additionally, the immunofluorescence analysis showed high levels of pAKT-Ser473 and the fatty acid metabolism marker CPT1A in embryos developed following VA treatment. In conclusion, the study reports, for the first time, the embryotrophic effects of VA, and the potential linkage to AKT signaling pathway that could be used as an efficacious protocol in assisted reproductive technologies (ART) to improve human fertility.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Oocitos , Animales , Bovinos , Humanos , Oocitos/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/métodos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ácido Vanílico/farmacología , Estrés Oxidativo , Desarrollo Embrionario , Transducción de Señal , Ácidos Grasos/metabolismo
2.
Animals (Basel) ; 13(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37174512

RESUMEN

Melatonin, an antioxidant hormone secreted by the pineal gland, has been recognized as a regulator for numerous biological events. The deleterious effects of juglone, a polyphenolic extract of walnut trees, on embryo development has been previously reported. In the current study, we aimed to display the impact of melatonin administrated during in vitro oocyte maturation (IVM) on juglone-treated oocytes. Thus, in vitro matured oocytes were collected after 24 h post incubation with juglone in the presence or absence of melatonin. Reactive oxygen species (ROS), glutathione (GSH) content, mitochondrial distribution, and the relative abundance of mRNA transcription levels were assessed in oocytes, in addition, oocytes were in vitro fertilized to check the competency levels of oocytes to generate embryos. We found that administration of melatonin during the maturation of oocytes under juglone stress significantly improved the cleavage rate, 8-16 cell-stage embryos and day-8 blastocysts when compared to the sole juglone treatment. In addition, the fluorescence intensity of ROS increased, whereas the GSH decreased in juglone-treated oocytes compared to melatonin-juglone co-treated and untreated ones. Additionally, a significant increase in the mitochondrial aberrant pattern, the pattern that was normalized following melatonin supplementation, was observed following juglone administration. The mRNA analysis using RT-qPCR revealed a significant upregulation of autophagy and oxidative-stress-specific markers in the juglone-treated group compared to the co-treatment and control. In conclusion, the study reveals, for the first time, a protective effect of melatonin against the oxidative stress initiated following juglone treatment during the in vitro maturation of oocytes.

3.
Oxid Med Cell Longev ; 2021: 5573357, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33927796

RESUMEN

Despite the numerous studies on melatonin and nicotinamide (NAM, the active form of vitamin B3), the linkage between these two biomolecules in the context of signaling pathways regulating preimplantation embryo development has not yet been investigated. In this study, we used bovine oocyte model to elucidate the effect of melatonin on the developmental competence of oocytes under the stress of high NAM concentrations. Results showed that NAM (20 mM) administration during in vitro maturation (IVM) significantly reduced oocyte maturation and actin distribution, while induced reactive oxygen species (ROS) accumulation and mitochondrial dysfunction, the multiple deleterious effects that were alleviated by melatonin (10-7 M). The RT-qPCR and/or immunofluorescence showed upregulation of the apoptosis (Caspase-3, Caspase-9, and BAX), autophagy (Beclin-1, LC3A, LC3B, ATG7, LAMP1, and LAMP2), cell cycle (P21, P27, and P53), and DNA damage (COX2 and 8-OxoG) specific markers in oocytes matured under NAM treatment, compared to NAM-melatonin dual-treated and the untreated ones. In addition, the total cleavage and blastocyst development rate, as well as the total number of cells and the inner cell mass (ICM) per blastocyst, were reduced, while DNA fragmentation was induced, in the group of NAM sole treatment than NAM-melatonin cotreatment and control. Inspecting the underlying mechanisms behind NAM-associated toxicity revealed an increase in transcription pattern of NAM methylation (NNMT and AHCY) genes in NAM-treated oocytes while the opposite profile was observed upon melatonin supplementation. In conclusion, to our knowledge, this is the first study reporting that melatonin can protect oocytes and embryos from NAM-induced injury through its ROS-scavenging activity together with potential interaction with NAM methylation signaling.


Asunto(s)
Metilación/efectos de los fármacos , Niacinamida/metabolismo , Oocitos/efectos de los fármacos , Apoptosis , Femenino , Humanos , Melatonina , Transducción de Señal
4.
Int J Mol Sci ; 22(1)2020 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-33375280

RESUMEN

Juglone, a major naphthalenedione component of walnut trees, has long been used in traditional medicine as an antimicrobial and antitumor agent. Nonetheless, its impact on oocyte and preimplantation embryo development has not been entirely clarified. Using the bovine model, we sought to elucidate the impact of juglone treatment during the in vitro maturation (IVM) of oocytes on their maturation and development of embryos. Results showed a severe reduction in oocyte nuclear maturation and cumulus expansion and a significant increase in mitochondrial dysfunction and reactive oxygen species (ROS) levels in cumulus-oocyte complexes (COCs) treated with juglone (12.5, 25.0, and 50.0 µM). In addition, RT-qPCR showed downregulation of the expansion-related (HAS2, TNFAIP6, PTX3, and PTGS2) and mitochondrial (ATPase6 and ATP5F1E) genes in juglone-treated COCs. Moreover, the development rates of day 4 total cleavage and 8-16 cell stage embryos, as well as day 8 blastocysts, were significantly reduced following exposure to juglone. Using immunofluorescence, the apoptotic marker caspase-9 was overexpressed in oocytes exposed to juglone (25.0 µM) compared to the untreated control. In conclusion, our study reports that exposing bovine oocytes to 12.5-50.0 µM of juglone can reduce their development through the direct induction of ROS accumulation, apoptosis, and mitochondrial dysfunction.


Asunto(s)
Apoptosis , Embrión de Mamíferos/patología , Mitocondrias/patología , Naftoquinonas/toxicidad , Oocitos/patología , Estrés Oxidativo/efectos de los fármacos , Animales , Blastocisto/efectos de los fármacos , Blastocisto/patología , Bovinos , Citotoxinas/toxicidad , Embrión de Mamíferos/efectos de los fármacos , Desarrollo Embrionario , Femenino , Técnicas de Maduración In Vitro de los Oocitos/métodos , Mitocondrias/efectos de los fármacos , Oocitos/efectos de los fármacos , Embarazo , Especies Reactivas de Oxígeno/metabolismo
5.
Cells ; 9(6)2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630550

RESUMEN

Nicotinamide (NAM), the amide form of vitamin B3, plays pivotal roles in regulating various cellular processes including energy production and maintenance of genomic stability. The current study aimed at deciphering the effect of NAM, when administered during in vitro maturation (IVM), on the developmental competence of bovine preimplantation embryos. Our results showed that low NAM concentrations reduced the oxidative stress and improved mitochondrial profile, total cleavage and 8-16 cell stage embryo development whereas the opposite profile was observed upon exposure to high NAM concentrations (10 mM onward). Remarkably, the hatching rates of day-7 and day-8 blastocysts were significantly improved under 0.1 mM NAM treatment. Using RT-qPCR and immunofluorescence, the autophagy-related (Beclin-1 (BECN1), LC3B, and ATG5) and the apoptotic (Caspases; CASP3 and 9) markers were upregulated in oocytes exposed to high NAM concentration (40 mM), whereas only CASP3 was affected, downregulated, following 0.1 mM treatment. Additionally, the number of cells per blastocyst and the levels of SIRT1, PI3K, AKT, and mTOR were higher, while the inner cell mass-specific transcription factors GATA6, SOX2, and OCT4 were more abundant, in day-8 embryos of NAM-treated group. Taken together, to our knowledge, this is the first study reporting that administration of low NAM concentrations during IVM can ameliorate the developmental competence of embryos through the potential regulation of oxidative stress, apoptosis, and SIRT1/AKT signaling.


Asunto(s)
Blastocisto/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/métodos , Niacinamida/uso terapéutico , Oocitos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Bovinos , Suplementos Dietéticos , Femenino , Humanos , Transducción de Señal
6.
J Virol ; 90(19): 8422-34, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27412600

RESUMEN

UNLABELLED: Aminoquinolines and piperazines, linked or not, have been used successfully to treat malaria, and some molecules of this family also exhibit antiviral properties. Here we tested several derivatives of 4-aminoquinolines and piperazines for their activity against hepatitis C virus (HCV). We screened 11 molecules from three different families of compounds, and we identified anti-HCV activity in cell culture for six of them. Of these, we selected a compound (B5) that is currently ending clinical phase I evaluation for neurodegenerative diseases. In hepatoma cells, B5 inhibited HCV infection in a pangenotypic and dose-dependent manner, and its antiviral activity was confirmed in primary hepatocytes. B5 also inhibited infection by pseudoparticles expressing HCV envelope glycoproteins E1 and E2, and we demonstrated that it affects a postattachment stage of the entry step. Virus with resistance to B5 was selected by sequential passage in the presence of the drug, and reverse genetics experiments indicated that resistance was conferred mainly by a single mutation in the putative fusion peptide of E1 envelope glycoprotein (F291I). Furthermore, analyses of the effects of other closely related compounds on the B5-resistant mutant suggest that B5 shares a mode of action with other 4-aminoquinoline-based molecules. Finally, mice with humanized liver that were treated with B5 showed a delay in the kinetics of the viral infection. In conclusion, B5 is a novel interesting anti-HCV molecule that could be used to decipher the early steps of the HCV life cycle. IMPORTANCE: In the last 4 years, HCV therapy has been profoundly improved with the approval of direct-acting antivirals in clinical practice. Nevertheless, the high costs of these drugs limit access to therapy in most countries. The present study reports the identification and characterization of a compound (B5) that inhibits HCV propagation in cell culture and is currently ending clinical phase I evaluation for neurodegenerative diseases. This molecule inhibits the HCV life cycle by blocking virus entry. Interestingly, after selection of drug-resistant virus, a resistance mutation in the putative fusion peptide of E1 envelope glycoprotein was identified, indicating that B5 could be used to further investigate the fusion mechanism. Furthermore, mice with humanized liver treated with B5 showed a delay in the kinetics of the viral infection. In conclusion, B5 is a novel interesting anti-HCV molecule that could be used to decipher the early steps of the HCV life cycle.


Asunto(s)
Aminoquinolinas/farmacología , Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Aminoquinolinas/química , Aminoquinolinas/aislamiento & purificación , Animales , Antivirales/química , Antivirales/aislamiento & purificación , Células Cultivadas , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Farmacorresistencia Viral , Hepatitis C/tratamiento farmacológico , Hepatocitos/virología , Humanos , Ratones , Ratones SCID , Modelos Moleculares , Estructura Molecular , Mutación Missense , Genética Inversa , Resultado del Tratamiento , Proteínas del Envoltorio Viral/genética , Internalización del Virus/efectos de los fármacos
7.
Viruses ; 8(6)2016 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-27338446

RESUMEN

While addition of the first-approved protease inhibitors (PIs), telaprevir and boceprevir, to pegylated interferon (PEG-IFN) and ribavirin (RBV) combination therapy significantly increased sustained virologic response (SVR) rates, PI-based triple therapy for the treatment of chronic hepatitis C virus (HCV) infection was prone to the emergence of resistant viral variants. Meanwhile, multiple direct acting antiviral agents (DAAs) targeting either the HCV NS3/4A protease, NS5A or NS5B polymerase have been approved and these have varying potencies and distinct propensities to provoke resistance. The pre-clinical in vivo assessment of drug efficacy and resistant variant emergence underwent a great evolution over the last decade. This field had long been hampered by the lack of suitable small animal models that robustly support the entire HCV life cycle. In particular, chimeric mice with humanized livers (humanized mice) and chimpanzees have been instrumental for studying HCV inhibitors and the evolution of drug resistance. In this review, we present the different in vivo HCV infection models and discuss their applicability to assess HCV therapy response and emergence of resistant variants.


Asunto(s)
Antivirales/administración & dosificación , Modelos Animales de Enfermedad , Farmacorresistencia Viral , Hepacivirus/efectos de los fármacos , Hepatitis C/tratamiento farmacológico , Hepatitis C/virología , Animales , Evaluación Preclínica de Medicamentos/métodos , Humanos , Ratones , Pan troglodytes
8.
J Virol ; 89(19): 10053-63, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26202241

RESUMEN

UNLABELLED: Despite the validation of direct-acting antivirals for hepatitis C treatment, the discovery of new compounds with different modes of action may still be of importance for the treatment of special patient populations. We recently identified a natural molecule, epigallocatechin-3-gallate (EGCG), as an inhibitor of hepatitis C virus (HCV) targeting the viral particle. The aim of this work was to discover new natural compounds with higher anti-HCV activity than that of EGCG and determine their mode of action. Eight natural molecules with structure similarity to EGCG were selected. HCV JFH1 in cell culture and HCV pseudoparticle systems were used to determine the antiviral activity and mechanism of action of the compounds. We identified delphinidin, a polyphenol belonging to the anthocyanidin family, as a new inhibitor of HCV entry. Delphinidin inhibits HCV entry in a pangenotypic manner by acting directly on the viral particle and impairing its attachment to the cell surface. Importantly, it is also active against HCV in primary human hepatocytes, with no apparent cytotoxicity and in combination with interferon and boceprevir in cell culture. Different approaches showed that neither aggregation nor destruction of the particle occurred. Cryo-transmission electron microscopy observations of HCV pseudoparticles treated with delphinidin or EGCG showed a bulge on particles that was not observed under control conditions. In conclusion, EGCG and delphinidin inhibit HCV entry by a new mechanism, i.e., alteration of the viral particle structure that impairs its attachment to the cell surface. IMPORTANCE: In this article, we identify a new inhibitor of hepatitis C virus (HCV) infection, delphinidin, that prevents HCV entry. This natural compound, a plant pigment responsible for the blue-purple color of flowers and berries, belongs to the flavonoid family, like the catechin EGCG, the major component present in green tea extract, which is also an inhibitor of HCV entry. We studied the mode of action of these two compounds against HCV and demonstrated that they both act directly on the virus, inducing a bulging of the viral envelope. This deformation might be responsible for the observed inhibition of virus attachment to the cell surface. The discovery of such HCV inhibitors with an unusual mode of action is important to better characterize the mechanism of HCV entry into hepatocytes and to help develop a new class of HCV entry inhibitors.


Asunto(s)
Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Hepacivirus/fisiología , Polifenoles/farmacología , Internalización del Virus/efectos de los fármacos , Antocianinas/administración & dosificación , Antocianinas/farmacología , Antivirales/administración & dosificación , Catequina/análogos & derivados , Catequina/farmacología , Línea Celular , Microscopía por Crioelectrón , Evaluación Preclínica de Medicamentos , Células HEK293 , Hepacivirus/ultraestructura , Hepatocitos/efectos de los fármacos , Hepatocitos/virología , Humanos , Interferón-alfa/administración & dosificación , Polifenoles/administración & dosificación , Prolina/administración & dosificación , Prolina/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA