Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37052981

RESUMEN

Melatonin has been documented to alleviate compromised pregnancies and enhance livestock performance traits. The objective of this study was to determine the effect of prenatal and postnatal melatonin supplementation on overall calf performance and dam milking traits in relation to calves, molecular factors involved in growth and metabolism of calves, along with testicular physiology and fertility traits in subsequent bulls. On days 190, 220 and 250 of gestation, dams (N = 60) were administered either two subdermal ear melatonin implants (preMEL) or no implants (preCON). After parturition, birth weights were recorded and calves were blocked based on prenatal treatment and sex. Calves received either melatonin implants (posMEL) or none (posCON) on days 0, 30, and 60 of age. On day 60 of lactation, a subset of dams (N = 32) were selected based on age, weight, and calf sex for milk collection and analysis. At weaning, (day 210 postnatally) calf weight, morphometric data, liver samples, and loin samples were collected. At 12 mo of age, bull (N = 30) scrotal circumference, scrotal temperature, and testicular artery measurements were recorded. Milk yield and fat percent from dams tended to decrease in the preMEL group (P < 0.07) compared with preCON group. Prenatal melatonin administration did not affect (P = 0.95) calf birth weight and similarly calf weaning weight was unaffected (P < 0.10) by prenatal or postnatal melatonin supplementation. Blood analysis demonstrated that plasma concentrations of melatonin were not different (P = 0.12) in dams; however, an increase (P < 0.001) in plasma concentrations of melatonin was observed in posMEL vs. posCON calves. A tendency (P < 0.10) for decreased MYF5 and MYOD1 expression in loin muscle was observed in the posMEL calves. Prenatal and postnatal melatonin administration did not affect subsequent bull scrotal measurements or testicular hemodynamics (P ≥ 0.14). Administering supplemental melatonin via implants during the prenatal and postnatal phase did not alter performance characteristics in offspring. In this study, dams were implanted in winter months, whereas calves were implanted in the spring months. Seasonal differences involving photoperiod and ambient temperature might have attributed to a lack of differences in melatonin levels during the prenatal phase. In the postnatal period, the level of developmental plasticity appears to be too low for melatonin properties to be effective.


Previous studies have examined maternal melatonin implants in fall calving Mississippi cattle during the third trimester of pregnancy. These studies have shown increased maternal uterine blood flow without any change in calf birth weight when supplemented with melatonin implants. However, calf weaning weights were increased in calves born to melatonin supplemented dams vs. their control counterparts. The objective of this study was to examine offspring performance following maternal melatonin supplementation (prenatal) and/or postnatal calf melatonin supplementation in spring calving Montana cattle. Calf performance and weight at weaning were not affected by maternal or postnatal melatonin supplementation. However, dam milk yield and fat percent were decreased in the melatonin supplemented dams. Maternal and postnatal melatonin supplementation did not affect bull measurements of reproductive performance. Interestingly, maternal concentrations of melatonin were not different between dam treatment groups; however, postnatal melatonin supplementation increased calf concentrations of melatonin. In this study, dams were implanted in winter months, whereas calves were implanted in the spring months. Seasonal differences involving photoperiod and ambient temperature may attribute to a lack of differences in melatonin levels during the prenatal phase.


Asunto(s)
Melatonina , Embarazo , Femenino , Animales , Bovinos , Masculino , Melatonina/farmacología , Melatonina/metabolismo , Parto , Leche/metabolismo , Hemodinámica , Peso al Nacer , Suplementos Dietéticos
2.
Biomolecules ; 13(3)2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36979425

RESUMEN

Mounting evidence in the literature indicates an important role of endogenous and exogenous melatonin in driving physiological and molecular adaptations in livestock. Melatonin has been extensively studied in seasonally polyestrous animals whereby supplementation studies have been used to adjust circannual rhythms in herds of animals under abnormal photoperiodic conditions. Livestock undergo multiple metabolic and physiological adaptation processes throughout their production cycle which can result in decreased immune response leading to chronic illness, weight loss, or decreased production efficiency; however, melatonin's antioxidant capacity and immunostimulatory properties could alleviate these effects. The cardiovascular system responds to melatonin and depending on receptor type and localization, melatonin can vasodilate or vasoconstrict several systemic arteries, thereby controlling whole animal nutrient partitioning via vascular resistance. Increased incidences of non-communicable diseases in populations exposed to circadian disruption have uncovered novel pathways of neurohormones, such as melatonin, influence health, and disease. Perturbations in immune function can negatively impact the growth and development of livestock which has been examined following melatonin supplementation. Specifically, melatonin can influence nutrient uptake, circulating nutrient profiles, and endocrine profiles controlling economically important livestock growth and development. This review focuses on the physiological, cellular, and molecular implications of melatonin on the health and disease of domesticated food animals.


Asunto(s)
Melatonina , Animales , Melatonina/metabolismo , Ganado/metabolismo , Ritmo Circadiano/fisiología , Antioxidantes/farmacología , Fotoperiodo
3.
Placenta ; 131: 13-22, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36469958

RESUMEN

INTRODUCTION: Recent research indicates an important role in the placental fetal brain axis, with a paucity of information reported in large animals. Melatonin supplementation has been investigated as a potential therapeutic to negate fetal growth restriction. We hypothesized that maternal nutrient restriction and melatonin supplementation would alter neurotransmitter pathways in fetal blood, cotyledonary and hypothalamus tissue. METHODS: On day 160 of gestation, Brangus heifers (n = 29 in fall study; n = 25 in summer study) were assigned to one of four treatments: adequately fed (ADQ-CON; 100% NRC recommendation), nutrient restricted (RES-CON; 60% NRC recommendation), and ADQ or RES supplemented with 20 mg/d of melatonin (ADQ-MEL; RES-MEL). Placentomes, fetal blood, and hypothalamic tissue were collected at day 240 of gestation. Neurotransmitters were analyzed in fetal blood and fetal and placental tissues. Transcript abundance of genes in the serotonin pathway and catecholamine pathway were determined in fetal hypothalamus and placental cotyledon. RESULTS: Serotonin was increased (P < 0.05) by 12.5-fold in the blood of fetuses from RES dams versus ADQ in the fall study. Additionally, melatonin supplementation increased (P < 0.05) neurotransmitter metabolites and transcript abundance of the monoamine oxidase A (MAOA) enzyme in the cotyledon. In the summer study, plasma dopamine and placental dopamine receptors were decreased (P < 0.05) in RES dams versus ADQ. DISCUSSION: In conclusion, these data indicate novel evidence of the presence of neurotransmitters and their synthesis and metabolism in the bovine conceptus, which could have greater implications in establishing postnatal behavior.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Melatonina , Neurotransmisores , Placenta , Animales , Bovinos , Femenino , Embarazo , Feto/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Melatonina/farmacología , Nutrientes , Placenta/metabolismo , Serotonina/metabolismo , Neurotransmisores/química , Neurotransmisores/farmacología
4.
J Anim Sci ; 99(9)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34387666

RESUMEN

The objectives were to examine melatonin-mediated changes in temporal uterine blood flow (UBF), vaginal temperatures (VTs), and fetal morphometrics in 54 commercial Brangus heifers (Fall, n = 29; Summer, n = 25) during compromised pregnancy. At day 160 of gestation, heifers were assigned to one of the four treatments consisting of adequately fed (ADQ-CON; 100% National Research Council [NRC]; n = 13), global nutrient restricted (RES-CON; 60% NRC; n =13), and ADQ or RES supplemented with 20 mg/d of melatonin (ADQ-MEL, n = 13; RES-MEL, n = 15). In the morning (0500 hours; AM) and afternoon (1300 hours; PM) of day 220 of gestation, UBF was determined via Doppler ultrasonography, while temperature data loggers attached to progesterone-free controlled internal drug releases were used to record VTs. At day 240 of gestation, heifers underwent cesarean sections for fetal removal and morphometrics determination. The UBF and VT data were analyzed using repeated measures of analysis of variance (ANOVA), while the morphometrics was analyzed using the MIXED procedure of SAS. Seasons were analyzed separately. In Fall, a nutrition by treatment interaction was observed, where the RES-CON heifers exhibited reduced total UBF compared with ADQ-CON (5.67 ± 0.68 vs. 7.97 ± 0.54 L/min; P = 0.039). In Summer, MEL heifers exhibited increased total UBF compared with the CON counterparts (8.16 ± 0.73 vs. 6.00 ± 0.70 L/min; P = 0.048). Moreover, there was a nutrition by treatment by time interaction in VT for Fall and Summer heifers (P ≤ 0.005). In Fall, all groups had decreased VT in the morning compared with the afternoon (P < 0.05). Whereas, in Summer, VT increased for ADQ-CON and RES-CON (P < 0.0001) from morning to afternoon, the ADQ-MEL and RES-MEL remained constant throughout the day (P = 0.648). Furthermore, the RES-MEL-PM exhibited decreased VT compared with ADQ-CON-PM (38.91 ± 0.09 vs. 39.26 ± 0.09 °C; P = 0.018). Lastly, in Fall, a main effect of nutrition was observed on fetal weights, where the RES dams had fetuses with decreased body weight when compared with ADQ (24.08 ± 0.62 vs. 26.57 ± 0.64 kg; P = 0.0087). In Summer, a nutrition by treatment interaction was observed on fetal weights where the RES-CON dams had fetuses with reduced weight when compared with ADQ-CON and RES-MEL (P < 0.05). In summary, nutrient restriction decreased UBF and melatonin supplementation increased UBF depending on the season. Additionally, melatonin appeared to decrease VT and rescue fetal weights when supplemented in the Summer.


Asunto(s)
Melatonina , Arteria Uterina , Animales , Bovinos , Femenino , Feto , Hemodinámica , Melatonina/farmacología , Nutrientes , Embarazo , Estaciones del Año , Temperatura
5.
J Anim Sci ; 99(5)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33773492

RESUMEN

Altering the composition of the bovine vaginal microbiota has proved challenging, with recent studies deeming the microbiota dynamic due to few overall changes being found. Therefore, the objectives of this study were to determine whether gestational age, endogenous progesterone, maternal nutrient restriction, or dietary melatonin altered the composition of the bovine vaginal microbiota. Brangus heifers (n = 29) from timed artificial insemination to day 240 of gestation were used; at day 160 of gestation, heifers were assigned to either an adequate (ADQ; n = 14; 100% NRC requirements) or restricted (RES; n = 15; 60% NRC requirements) nutritional plane and were either supplemented with dietary melatonin (MEL; n = 15) or not supplemented (CON; n = 14). Samples for vaginal microbiota analysis were taken on day 0 (prior to artificial insemination), day 150 (prior to dietary treatments), and day 220 of gestation (60 d post-treatment initiation) using a double guarded culture swab. The vaginal bacterial overall community structure was determined through sequencing the V4 region of the 16S rRNA gene using the Illumina Miseq platform. Alpha diversity was compared via 2-way ANOVA; ß diversity was compared via PERMANOVA. The linear discriminant analysis for effect size (LEfSe) pipeline was utilized for analysis of taxonomic rank differences between bacterial communities. Gestational age, progesterone concentration, and maternal nutritional plane did not alter α or ß diversity of the vaginal microbiota. However, gestational age resulted in compositional changes at the order, family, and genus level. Moreover, dietary melatonin supplementation did not alter α diversity of the vaginal microbiota but did alter ß diversity (P = 0.02). Specifically, melatonin altered the composition at the genus level and increased the prevalence of aerobic bacteria in the vaginal tract. To date, melatonin is the first hormone associated with altering the composition of the bovine vaginal microbiota.


Asunto(s)
Melatonina , Microbiota , Animales , Bovinos , Dieta/veterinaria , Femenino , Melatonina/farmacología , Nutrientes , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA