Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Curr Issues Mol Biol ; 45(12): 10109-10120, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38132477

RESUMEN

Green synthesized silver nanoparticles (AgNPs) have become popular because of their promising biological activities. However, for most of these nanoparticles, the cytotoxic effects have not been determined and their safety is not guaranteed. In a previous study, we successfully synthesized AgNPs (Cotyledon-AgNPs) using an extract of Cotyledon orbiculata, a medicinal plant traditionally used in South Africa to treat skin conditions. Cotyledon-AgNPs were shown to have significant antimicrobial and wound-healing activities. Fibroblast cells treated with extracts of C. orbiculata and Cotyledon-AgNPs demonstrated an enhanced growth rate, which is essential in wound healing. These nanoparticles therefore have promising wound-healing activities. However, the cytotoxicity of these nanoparticles is not known. In this study, the toxic effects of C. orbiculata extract and Cotyledon-AgNPs on the non-cancerous skin fibroblast (KMST-6) were determined using in vitro assays to assess oxidative stress and cell death. Both the C. orbiculata extract and the Cotyledon-AgNPs did not show any significant cytotoxic effects in these assays. Gene expression analysis was also used to assess the cytotoxic effects of Cotyledon-AgNPs at a molecular level. Of the eighty-four molecular toxicity genes analysed, only eight (FASN, SREBF1, CPT2, ASB1, HSPA1B, ABCC2, CASP9, and MKI67) were differentially expressed. These genes are mainly involved in fatty acid and mitochondrial energy metabolism. The results support the finding that Cotyledon-AgNPs have low cytotoxicity at the concentrations tested. The upregulation of genes such as FASN, SERBF1, and MKI-67 also support previous findings that Cotyledon-AgNPs can promote wound healing via cell growth and proliferation. It can therefore be concluded that Cotyledon-AgNPs are not toxic to skin fibroblast cells at the concentration that promotes wound healing. These nanoparticles could possibly be safely used for wound healing.

2.
Plants (Basel) ; 12(9)2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37176928

RESUMEN

Plants have demonstrated potential in providing various types of phytomedicines with chemopreventive properties that can combat prostate cancer. However, despite their promising in vitro activity, the incorporation of these phytochemicals into the market as anticancer agents has been hindered by their poor bioavailability, mainly due to their inadequate aqueous solubility, chemical instability, and unsatisfactory circulation time. To overcome these drawbacks, it has been suggested that the incorporation of phytochemicals as nanoparticles can offer a solution. The use of plant-based chemicals can also improve the biocompatibility of the formulated nanoparticles by avoiding the use of certain hazardous chemicals in the synthesis, leading to decreased toxicity in vivo. Moreover, in some cases, phytochemicals can act as targeting agents to tumour sites. This review will focus on and summarize the following points: the different types of nanoparticles that contain individual phytochemicals or plant extracts in their design with the aim of improving the bioavailability of the phytochemicals; the therapeutic evaluation of these nanoparticles against prostate cancer both in vitro and in vivo and the reported mode of action and the different types of anticancer experiments used; how the phytochemicals can also improve the targeting effects of these nanoparticles in some instances; and the potential toxicity of these nanoparticles.

3.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36555732

RESUMEN

The synthesis of silver nanoparticles using biogenic methods, particularly plants, has led to the discovery of several effective nanoparticles. In many instances, plant-derived silver nanoparticles have been shown to have more activity than the plant extract which was used to synthesize the nanoparticles. Silver nanoparticles have been successfully synthesized using the medicinal plant, Cotyledon orbiculata. This is a shrub found in the Western Cape province of South Africa. It has a long history of use in traditional medicine in the treatment of wounds and skin infections. The C. orbiculata synthesized silver nanoparticles (Cotyledon-AgNPs) were reported to have good antimicrobial and anti-inflammatory activities; however, their wound-healing properties have not been determined. This study aimed to determine the wound healing activity of Cotyledon-AgNPs using the scratch assay. Gene expression studies were also done to determine the nanoparticles' mechanism of action. The Cotyledon-AgNPs showed good antioxidant, growth-promoting and cell migration properties. Gene expression studies showed that the C. orbiculata water extract and Cotyledon-AgNPs promoted wound healing by upregulating genes involved in cell proliferation, migration and growth while downregulating pro-inflammatory genes. This confirms, for the first time that a water extract of C. orbiculata and silver nanoparticles synthesized from this extract are good wound-healing agents.


Asunto(s)
Antioxidantes , Nanopartículas del Metal , Antioxidantes/farmacología , Plata/farmacología , Cotiledón , Cicatrización de Heridas , Extractos Vegetales/farmacología , Antibacterianos/farmacología
4.
Biomedicines ; 10(11)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36359308

RESUMEN

Silver nanoparticles (AgNPs) have attracted a lot of interest directed towards biomedical applications due in part to their outstanding anti-microbial activities. However, there have been many health-impacting concerns about their traditional synthesis methods, i.e., the chemical and physical methods. Chemical methods are commonly used and contribute to the overall toxicity of the AgNPs, while the main disadvantages of physical synthesis include high production costs and high energy consumption. The biological methods provide an economical and biocompatible option as they use microorganisms and natural products in the synthesis of AgNPs with exceptional biological properties. Plant extract-based synthesis has received a lot of attention and has been shown to resolve the limitations associated with chemical and physical methods. AgNPs synthesized using plant extracts provide a safe, cost-effective, and environment-friendly approach that produces biocompatible AgNPs with enhanced properties for use in a wide range of applications. The review focused on the use of plant-synthesized AgNPs in various biomedical applications as anti-microbial, anti-cancer, anti-inflammatory, and drug-delivery agents. The versatility and potential use of green AgNPs in the bio-medicinal sector provides an innovative alternative that can overcome the limitations of traditional systems. Thus proving green nanotechnology to be the future for medicine with continuous progress towards a healthier and safer environment by forming nanomaterials that are low- or non-toxic using a sustainable approach.

5.
Molecules ; 27(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36014504

RESUMEN

Bambara groundnut (BGN) is an underexploited crop with a rich nutrient content and is used in traditional medicine, but limited information is available on the quantitative characterization of its flavonoids and phenolic acids. We investigated the phenolic profile of whole seeds and cotyledons of five BGN varieties consumed in South Africa using UPLC-qTOF-MS and GC-MS. Twenty-six phenolic compounds were detected/quantified in whole seeds and twenty-four in cotyledon, with six unidentified compounds. Flavonoids include flavan-3-ol (catechin, catechin hexoside-A, catechin hexoside-B), flavonol (quercetin, quercetin-3-O-glucoside, rutin, myricetin, kaempherol), hydroxybenzoic acid (4-Hydroxybenzoic, 2,6 Dimethoxybenzoic, protocatechuic, vanillic, syringic, syringaldehyde, gallic acids), hydroxycinnamic acid (trans-cinnamic, p-coumaric, caffeic, ferulic acids) and lignan (medioresinol). The predominant flavonoids were catechin/derivatives, with the highest content (78.56 mg/g) found in brown BGN. Trans-cinnamic and ferulic acids were dominant phenolic acid. Cotyledons of brown and brown-eyed BGN (317.71 and 378.59 µg/g) had the highest trans-cinnamic acid content, while red seeds had the highest ferulic acid (314.76 µg/g) content. Colored BGN had a significantly (p < 0.05) higher content of these components. Whole BGN contained significantly (p < 0.05) higher amount of flavonoids and phenolic acids, except for the trans-cinnamic acid. The rich flavonoid and phenolic acid content of BGN seeds highlights the fact that it is a good source of dietary phenolics with potential health-promoting properties.


Asunto(s)
Catequina , Vigna , Antioxidantes , Flavonoides , Hidroxibenzoatos/análisis , Fenoles/análisis , Semillas/química , Sudáfrica
6.
Heliyon ; 8(3): e09024, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35284682

RESUMEN

The utilization of nutraceuticals on a global scale has significantly increased over the past few years due to their reported health benefits and consumer's reluctance to consume synthetic drugs. This paper provides information regarding new and potential value added uses of biologically active compounds in Bambara groundnut (BGN) as ingredients that could be further researched and exploited for various applications. Nutraceutical is a food or part of food that apart from providing basic nutrients, offers medicinal benefits either by prevention and or treatment of an illness. BGN is a legume with rich nutrient profile that is under exploited industrially. It is widely used in African traditional medicine for its various health outcome, but has not been explored scientifically for its numerous nutraceutical potentials. Compared to beans BGN has greater quantity of soluble fiber and also have high dietary fiber. It is rich in polyphenolic compound which include flavonoids subgroups like flavonols, flavanols, anthocyanindins, isoflavones and phenolic acids: both benzoic acid and cinnamic acid derivatives, biologically active polyunsaturated fatty acids, proteins and peptides, antioxidant vitamins and minerals. The rising interest and emphasis in plant-based biologically active components (nutraceuticals) for various health promotion, has positioned this African legume as a potential source of nutraceutical ingredients (bioactive components) that could be exploited for improved nutrition and health.

7.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35163718

RESUMEN

Silver nanoparticles (AgNPs) are the most commercialized nanomaterials and presumed to be biocompatible based on the biological effects of the bulk material. However, their physico-chemical properties differ significantly to the bulk materials and are associated with unique biological properties. The study investigated the antimicrobial and cytotoxicity effects of AgNPs synthesized using gum arabic (GA), sodium borohydride (NaBH4), and their combination as reducing agents. The AgNPs were characterized using ultraviolet-visible spectrophotometry (UV-Vis), dynamic light scattering (DLS), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The anti-bacterial activity was assessed using agar well diffusion and microdilution assays, and the cytotoxicity effects on Caco-2, HT-29 and KMST-6 cells using MTT assay. The GA-synthesized AgNPs (GA-AgNPs) demonstrated higher bactericidal activity against all bacteria, and non-selective cytotoxicity towards normal and cancer cells. AgNPs reduced by NaBH4 (C-AgNPs) and the combination of GA and NaBH4 (GAC-AgNPs) had insignificant anti-bacterial activity and cytotoxicity at ≥50 µg/mL. The study showed that despite the notion that AgNPs are safe and biocompatible, their toxicity cannot be overruled and that their toxicity can be channeled by using biocompatible polymers, thereby providing a therapeutic window at concentrations that are least harmful to mammalian cells but toxic to bacteria.


Asunto(s)
Acacia , Nanopartículas del Metal , Animales , Antibacterianos/química , Antibacterianos/farmacología , Bacterias , Células CACO-2 , Goma Arábiga/farmacología , Humanos , Mamíferos , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Plata/química , Espectroscopía Infrarroja por Transformada de Fourier
8.
Nanoscale Res Lett ; 16(1): 174, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34866165

RESUMEN

The medical properties of metals have been explored for centuries in traditional medicine for the treatment of infections and diseases and still practiced to date. Platinum-based drugs are the first class of metal-based drugs to be clinically used as anticancer agents following the approval of cisplatin by the United States Food and Drug Administration (FDA) over 40 years ago. Since then, more metals with health benefits have been approved for clinical trials. Interestingly, when these metals are reduced to metallic nanoparticles, they displayed unique and novel properties that were superior to their bulk counterparts. Gold nanoparticles (AuNPs) are among the FDA-approved metallic nanoparticles and have shown great promise in a variety of roles in medicine. They were used as drug delivery, photothermal (PT), contrast, therapeutic, radiosensitizing, and gene transfection agents. Their biomedical applications are reviewed herein, covering their potential use in disease diagnosis and therapy. Some of the AuNP-based systems that are approved for clinical trials are also discussed, as well as the potential health threats of AuNPs and some strategies that can be used to improve their biocompatibility. The reviewed studies offer proof of principle that AuNP-based systems could potentially be used alone or in combination with the conventional systems to improve their efficacy.

9.
Plants (Basel) ; 10(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34961106

RESUMEN

In Africa, medicinal plants have been traditionally used as a source of medicine for centuries. To date, African medicinal plants continue to play a significant role in the treatment of wounds. Chronic wounds are associated with severe healthcare and socio-economic burdens despite the use of conventional therapies. Emergence of novel wound healing strategies using medicinal plants in conjunction with nanotechnology has the potential to develop efficacious wound healing therapeutics with enhanced wound repair mechanisms. This review identified African medicinal plants and biogenic nanoparticles used to promote wound healing through various mechanisms including improved wound contraction and epithelialization as well as antibacterial, antioxidant and anti-inflammatory activities. To achieve this, electronic databases such as PubMed, Scifinder® and Google Scholar were used to search for medicinal plants used by the African populace that were scientifically evaluated for their wound healing activities in both in vitro and in vivo models from 2004 to 2021. Additionally, data on the wound healing mechanisms of biogenic nanoparticles synthesized using African medicinal plants is included herein. The continued scientific evaluation of wound healing African medicinal plants and the development of novel nanomaterials using these plants is imperative in a bid to alleviate the detrimental effects of chronic wounds.

10.
Plants (Basel) ; 10(9)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34579460

RESUMEN

The application of metallic nanoparticles (MNPs), especially that of silver, gold, cobalt, and zinc as antimicrobial, anticancer, drug delivery, contrast, and bioimaging agents has transformed the field of medicine. Their functions, which are attributed to their physicochemical properties, have gained prominence in various technological fields. Although MNPs can be produced via rigorous physical and chemical techniques, in recent years, a biological approach utilizing natural materials has been developed. With the increasing enthusiasm for safe and efficient nanomaterials, the biological method incorporating microorganisms and plants is preferred over physical and chemical methods of nanoparticle synthesis. Of these bio-entities, plants have received great attention owing to their capability to reduce and stabilize MNPs in a single one-pot protocol. South Africa is home to ~10% of the world's plant species, making it a major contributor to the world's ecological scenery. Despite the documented contribution of South African plants, particularly in herbal medicine, very few of these plants have been explored for the synthesis of the noble MNPs. This paper provides a review of some important South African medicinal plants that have been utilized for the synthesis of MNPs. The enhanced biological properties of the biogenic MNPs attest to their relevance in medicine. In this endeavour, more of the African plant biodiversity must be explored for the synthesis of MNPs and be validated for their potential to be translated into future nanomedicine.

11.
Nanomaterials (Basel) ; 11(5)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065254

RESUMEN

Cotyledon orbiculata, commonly known as pig's ear, is an important medicinal plant of South Africa. It is used in traditional medicine to treat many ailments, including skin eruptions, abscesses, inflammation, boils and acne. Many plants have been used to synthesize metallic nanoparticles, particularly silver nanoparticles (AgNPs). However, the synthesis of AgNPs from C. orbiculata has never been reported before. The aim of this study was to synthesize AgNPs using C. orbiculata and evaluate their antimicrobial and immunomodulatory properties. AgNPs were synthesized and characterized using Ultraviolet-Visible Spectroscopy (UV-Vis), Dynamic Light Scattering (DLS) and High-Resolution Transmission Electron Microscopy (HR-TEM). The antimicrobial activities of the nanoparticles against skin pathogens (Staphylococcus aureus, Staphylococcus epidermidis, Methicillin Resistance Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans) as well as their effects on cytokine production in macrophages (differentiated from THP-1 cells) were evaluated. The AgNPs from C. orbiculata exhibited antimicrobial activity, with the highest activity observed against P. aeruginosa (5 µg/mL). The AgNPs also showed anti-inflammatory activity by inhibiting the secretion of pro-inflammatory cytokines (TNF-alpha, IL-6 and IL-1 beta) in lipopolysaccharide-treated macrophages. This concludes that the AgNPs produced from C. orbiculata possess antimicrobial and anti-inflammation properties.

12.
Nanomaterials (Basel) ; 11(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33429945

RESUMEN

Cyclopia intermedia (C. intermedia) is an indigenous South African shrub used to prepare the popular medicinal honeybush (HB) tea. This plant contains high levels of mangiferin (MGF), a xanthonoid that was reported to have numerous biological activities, including anti-tumor activity. MGF and extracts that contain high concentrations of MGF, such as extracts from Mangifera indica L. or mango have been used to synthesize gold nanoparticles (AuNPs) using green nanotechnology. It has previously been shown that when AuNPs synthesized from M. indica L. extracts are used in combination with doxorubicin (DOX) and Ayurvedic medicine, the anti-tumor effects appear to be augmented. It has also been demonstrated that MGF used in combination with DOX resulted in enhanced anti-tumor effects. In this study, C. intermedia (HB) and MGF were used to synthesize HB-AuNPs and MGF-AuNPs, respectively. The physicochemical properties of the AuNPs were characterized by the UV-Visible Spectroscopy (UV-Vis), dynamic light scattering (DLS), Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD) and high-resolution transmission electron microscopy (HR-TEM). The cytotoxicity of HB-AuNPs and MGF-AuNPs were assessed on human colon (Caco-2), prostate (PC-3) and glioblastoma (U87) cancer cells; as well as normal breast epithelial (MCF-12A) cells using the MTT assay. Both HB-AuNPs and MGF-AuNPs demonstrated relatively low cytotoxicity in these cells. However, when these nanoparticles were used in combination with DOX, the cytotoxicity of DOX was significantly augmented.

13.
J Diet Suppl ; 18(2): 132-146, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32114858

RESUMEN

The anti-cancer activities of many fermented foods and beverages are now scientifically established. Ogiri-egusi is a condiment prepared from fermentation of Citrullus vulgaris (melon) seeds and consumed in many countries of West Africa. Its anti-oxidative and anti-hyperlipidaemic properties have been reported. This study investigated the anti-cancer activities of the aqueous and methanolic extracts from ogiri-egusi. Cytotoxicity was investigated using the MTT and colony-formation inhibition assays while flow-cytometer based Apopercentage assay was used to quantify apoptosis in extracts-treated cervical and liver cancer and normal human fibroblast cells. The inhibitory concentration responsible for killing 50% of cells after 24 h by the aqueous extract in KMST-6, HeLa, and Hep-G2 cells were estimated at 1.610, 1.020, and 1.507 mg/mL respectively. While these values reduced with increasing incubation time in cancer cells it increased in the non-cancer cell. Furthermore, the extract significantly induced apoptosis in HeLa (97 ± 0.18%) and Hep-G2 (73 ± 6.73%) cells. These findings were corroborated by cells morphologic presentations and inhibition of colony formation assay. These findings suggest that the aqueous extract from fermented Citrullus vulgaris seeds might be a nutraceutical with potential anti-cancer properties.


Asunto(s)
Antineoplásicos Fitogénicos , Apoptosis , Citrullus , Extractos Vegetales , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Citrullus/química , Fibroblastos/efectos de los fármacos , Células HeLa , Células Hep G2 , Humanos , Extractos Vegetales/farmacología , Semillas/química
14.
Molecules ; 25(23)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256043

RESUMEN

The Catharanthus roseus plant has been used traditionally to treat diabetes mellitus. Scientific evidence supporting the antidiabetic effects of this plant's active ingredient-vindoline has not been fully evaluated. In this study, extracts of C. roseus and vindoline were tested for antioxidant activities, alpha amylase and alpha glucosidase inhibitory activities and insulin secretory effects in pancreatic RIN-5F cell line cultured in the absence of glucose, at low and high glucose concentrations. The methanolic extract of the plant showed the highest antioxidant activities in addition to the high total polyphenolic content (p < 0.05). The HPLC results exhibited increased concentration of vindoline in the dichloromethane and the ethylacetate extracts. Vindoline showed noticeable antioxidant activity when compared to ascorbic acid at p < 0.05 and significantly improved the in vitro insulin secretion. The intracellular reactive oxygen species formation in glucotoxicity-induced cells was significantly reduced following treatment with vindoline, methanolic and the dichloromethane extracts when compared to the high glucose untreated control (p < 0.05). Plant extracts and vindoline showed weaker inhibitory effects on the activities of carbohydrate metabolizing enzymes when compared to acarbose, which inhibited the activities of the enzymes by 80%. The plant extracts also exhibited weak alpha amylase and alpha glucosidase inhibitory effects.


Asunto(s)
Alcaloides/química , Antioxidantes/química , Antioxidantes/farmacología , Catharanthus/química , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Vinblastina/análogos & derivados , Glucemia/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Secreción de Insulina/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/química , Especies Reactivas de Oxígeno , Vinblastina/química , alfa-Amilasas/antagonistas & inhibidores
15.
Front Oncol ; 10: 547392, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33163396

RESUMEN

Alternative splicing is deregulated in cancer and alternatively spliced products can be linked to cancer hallmarks. Targeting alternative splicing could offer novel effective cancer treatments. We investigated the effects of the crude extract of a South African medicinal plant, Cotyledon orbiculata, on cell survival of colon (HCT116) and esophageal (OE33 and KYSE70) cancer cell lines. Using RNASeq, we discovered that the extract interfered with mRNA regulatory pathways. The extract caused hnRNPA2B1 to splice from the hnRNPB1 to the hnRNPA2 isoform, resulting in a switch in the BCL2L1 gene from Bcl-xL to Bcl-xS causing activation of caspase-3-cleavage and apoptosis. Similar splicing effects were induced by the known anti-cancer splicing modulator pladienolide B. Knockdown of hnRNPB1 using siRNA resulted in decreased cell viability and increased caspase-3-cleavage, and over-expression of hnRNPB1 prevented the effect of C. orbiculata extract on apoptosis and cell survival. The effect of the hnRNPA2/B1 splicing switch by the C. orbiculata extract increased hnRNPA2B1 binding to Bcl-xl/s, BCL2, MDM2, cMYC, CD44, CDK6, and cJUN mRNA. These findings suggest that apoptosis in HCT116, OE33, and KYSE cancer cells is controlled by switched splicing of hnRNPA2B1 and BCL2L1, providing evidence that hnRNPB1 regulates apoptosis. Inhibiting this splicing could have therapeutic potential for colon and esophageal cancers. Targeting hnRNPA2B1 splicing in colon cancer regulates splicing of BCL2L1 to induce apoptosis. This approach could be a useful therapeutic strategy to induce apoptosis and restrain cancer cell proliferation and tumor progression. Here, we found that the extract of Cotyledon orbiculata, a South African medicinal plant, had an anti-proliferative effect in cancer cells, mediated by apoptosis induced by alternative splicing of hnRNPA2B1 and BCL2L1.

16.
Nanotechnology ; 31(50): 505607, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33021215

RESUMEN

Nanoparticles (NPs) synthesized using various chemical and physical methods are often cytotoxic which restricts their use in biomedical applications. In contrast, metallic biogenic NPs synthesized using biological systems such as plant extracts are said to be safer and their production more cost effective. NPs synthesized from plants with known medicinal properties can potentially have similar bioactivities as these plants. It has been shown that Salvia africana-lutea (SAL) and Sutherlandia frutescens (SF) have antibacterial activities. This study used water extracts of SAL and SF to produce biogenic silver NPs (AgNPs) and gold NPs (AuNPs). The antibacterial activity of AgNPs and AuNPs was tested against two pathogens (Staphylococcus epidermidis and P. aeruginosa). NP synthesis was optimized by varying the synthesis conditions which include synthesis time and temperature, plant extract concentration, silver nitrate (AgNO3) concentration and sodium tetrachloroaurate (III) dihydrate (NaAuCl4 · 2H2O) concentration. The NPs were characterized using Ultraviolet-visible (UV-vis) spectroscopy, dynamic light scattering, high-resolution transmission electron microscopy (HR-TEM), and Fourier transform infrared (FT-IR) spectroscopy. SAL was able to synthesize both Ag (SAL AgNP) and Au (SAL AuNP) nanoparticles, whilst SF synthesized Ag (SF AgNP) nanoparticles only. The absorbance spectra revealed the characteristic surface plasmon resonance peak between 400-500 nm and 500-600 nm for AgNP and AuNP, respectively. HR-TEM displayed the presence of spherical and polygon shaped nanoparticles with varying sizes whilst the Energy Dispersive x-ray spectra and selected area diffraction pattern confirmed the successful synthesis of the AgNPs and AuNPs by displaying the characteristic crystalline nature, optical adsorption peaks and lattice fringes. FT-IR spectroscopy was employed to identify the functional groups involved in the NP synthesis. The microtitre plate method was employed to determine the minimum inhibitory concentration (MIC) of the NPs and the extracts. The water extracts and SAL AuNP did not have significant antibacterial activity, while SAL AgNP and SF AgNP displayed high antibacterial activity. In conclusion, the data generated suggests that SAL and SF could be used for the efficient synthesis of antibacterial biogenic nanoparticles.


Asunto(s)
Antibacterianos/química , Oro/química , Nanopartículas del Metal/química , Salvia/química , Plata/química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Oro/farmacología , Tecnología Química Verde , Humanos , Tamaño de la Partícula , Extractos Vegetales/química , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Plata/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus epidermidis/efectos de los fármacos
17.
Molecules ; 25(19)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003351

RESUMEN

Scientists have demonstrated the potential of plant materials as 'green' reducing and stabilizing agents for the synthesis of gold nanoparticles (AuNPs) and opened new ecofriendly horizons to develop effective and less harmful treatment strategies. The current study demonstrated the use of Terminalia mantaly (TM) extracts to synthesize AuNPs with enhanced cytotoxic effects. The TM-AuNPs were synthesized at 25 and 70 °C using water (WTM) and methanolic (MTM) extracts of the leaf, root and stem/bark parts of the plant. The TM-AuNPs were characterized using UV-visible spectrophotometry, dynamic light scattering (DLS), transmission electron microscopy, energy dispersive X-ray (EDX), selection area electron diffraction (SAED) and Fourier transform infrared (FTIR) spectroscopy. Majority of the TM-AuNPs were spherical with a mean diameter between 22.5 and 43 nm and were also crystalline in nature. The cytotoxic effects of TM-AuNPs were investigated in cancer (Caco-2, MCF-7 and HepG2) and non-cancer (KMST-6) cell lines using the MTT assay. While the plant extracts showed some cytotoxicity towards the cancer cells, some of the TM-AuNPs were even more toxic to the cells. The IC50 values (concentrations of the AuNPs that inhibited 50% cell growth) as low as 0.18 µg/mL were found for TM-AuNPs synthesized using the root extract of the plant. Moreover, some of the TM-AuNPs demonstrated selective toxicity towards specific cancer cell types. The study demonstrates the potential of TM extracts to produce AuNPs and describe the optimal conditions for AuNPs using TM extracts. The toxicity of some the TM-AuNPs can possibly be explored in the future as an antitumor treatment.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Terminalia/química , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Dispersión Dinámica de Luz , Tecnología Química Verde , Humanos , Concentración 50 Inhibidora , Nanopartículas del Metal/ultraestructura , Fitoquímicos/farmacología , Espectrofotometría Ultravioleta
18.
Int J Nanomedicine ; 14: 9031-9046, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31819417

RESUMEN

BACKGROUND: The global increase in outbreaks and mortality rates associated with multi-drug-resistant (MDR) bacteria is a major health concern and calls for alternative treatments. Natural-derived products have shown potential in combating the most dreadful diseases, and therefore serve as an effective source of bioactive compounds that can be used as anti-bacterial agents. These compounds are able to reduce metal ions and cap nanoparticles to form biogenic nanoparticles (NPs) with remarkable anti-bacterial activities. This study explores the use of Terminalia mantaly (TM) extracts for the synthesis of biogenic silver NPs (TM-AgNPs) and the evaluation of their antibacterial activity. METHODS: TM-AgNPs were synthetized by the reduction of AgNO3 with aqueous and methanolic TM extracts. UV-visible (UV-vis) spectrophotometry, Dynamic Light Scattering (DLS), Transmission Electron Microscopy, and Fourier Transform Infrared (FTIR) analyses were used to characterise the TM-AgNPs. Anti-bacterial activity of the TM extracts and TM-AgNPs was evaluated against eight bacterial strains using the broth microdilution assay. The growth inhibitory kinetics of the bio-active TM-AgNPs was assessed on susceptible strains for a period of 8 hrs. RESULTS: Polycrystalline biogenic AgNPs with anisotropic shapes and diameter range of 11 to 83 nm were synthesized from the TM extracts. The biogenic TM-AgNPs showed significant antibacterial activity compared to their respective extracts. The MIC values for TM-AgNPs and extracts were 3 and 125 µg/mL, respectively. Biogenic AgNPs synthesised from the aqueous TM leaf extract at 25°C (aTML-AgNPs-25°C) showed significant antibacterial activity against all the bacterial strains tested in this study. Their bactericidal effect was particularly higher against the Streptococcus pneumoniae and Haemophilus influenzae. CONCLUSION: This study demonstrated the ability of TM extracts to synthesize biogenic AgNPs. The NPs synthesized from the aqueous TM extracts demonstrated higher antibacterial activity against the tested microorganisms compared to the methanolic extracts. Studies are underway to identify the phytochemicals involved in NP synthesis and their mechanism of action.


Asunto(s)
Antibacterianos/farmacología , Nanopartículas del Metal/química , Extractos Vegetales/química , Plata/farmacología , Terminalia/química , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Dispersión Dinámica de Luz , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier
19.
Int J Nanomedicine ; 14: 9007-9018, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31819415

RESUMEN

BACKGROUND: Macrophages and Natural Killer (NK) cells are an integral part of the innate immune system. These cells produce pro-inflammatory cytokines in response to bacterial infections. However, prolonged inflammation can be a contributing factor in the etiology of several diseases such as rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, psoriasis and eczema. Reducing the secretion of pro-inflammatory cytokines is an effective treatment strategy for these conditions. Gold nanoparticles (AuNPs) have been shown to have immunosuppressive effects. Extracts of the Hypoxis hemerocallidea plant have also been shown to have immunomodulatory effects. It has been demonstrated previously that extracts of the H. hemerocallidea can be used to synthesize AuNPs. PURPOSE: This study aimed to investigate whether AuNPs synthesized using H. hemerocallidea extract and its major secondary metabolite, hypoxoside, have any immunomodulatory effects in macrophages and NK cells. METHODOLOGY: AuNPs derived from the H. hemerocallidea extract were synthesized as previously described. Using similar methodologies, this study shows for the first time the synthesis of AuNPs from hypoxoside. The AuNPs were characterized using several optical and spectroscopic techniques. The immunomodulatory effects of the aqueous extract of H. hemerocallidea, hypoxoside, as well as the AuNPs produced from the extract and hypoxoside, were investigated by measuring the cytokine levels in macrophages (IL-1ß, IL-6 and TNF-α) and NK cells (IFN-γ) using solid phase sandwich ELISA technique. RESULTS: The results show that spherical AuNPs (average size 26 ± 2 nm) were synthesized from hypoxoside. The results also show that the four treatments (H. hemerocallidea extract, hypoxoside and their respective AuNPs can lower the pro-inflammatory cytokine levels in the macrophages cells, while only AuNPs produced from hypoxoside can reduce cytokine responses in NK cells. CONCLUSION: This study shows that all four treatments investigated here could be further explored for the development of anti-inflammatory therapies.


Asunto(s)
Alquinos/farmacología , Glucósidos/farmacología , Oro/farmacología , Hypoxis/química , Factores Inmunológicos/farmacología , Células Asesinas Naturales/efectos de los fármacos , Macrófagos/efectos de los fármacos , Nanopartículas del Metal/química , Extractos Vegetales/química , Antiinflamatorios/farmacología , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Humanos , Hidrodinámica , Inmunomodulación/efectos de los fármacos , Nanopartículas del Metal/ultraestructura , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Células THP-1
20.
J Nanobiotechnology ; 17(1): 122, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31842876

RESUMEN

Obesity through its association with type 2 diabetes (T2D), cancer and cardiovascular diseases (CVDs), poses a serious health threat, as these diseases contribute to high mortality rates. Pharmacotherapy alone or in combination with either lifestyle modification or surgery, is reliable in maintaining a healthy body weight, and preventing progression to obesity-induced diseases. However, the anti-obesity drugs are limited by non-specificity and unsustainable weight loss effects. As such, novel and improved approaches for treatment of obesity are urgently needed. Nanotechnology-based therapies are investigated as an alternative strategy that can treat obesity and be able to overcome the drawbacks associated with conventional therapies. The review presents three nanotechnology-based anti-obesity strategies that target the white adipose tissues (WATs) and its vasculature for the reversal of obesity. These include inhibition of angiogenesis in the WATs, transformation of WATs to brown adipose tissues (BATs), and photothermal lipolysis of WATs. Compared to conventional therapy, the targeted-nanosystems have high tolerability, reduced side effects, and enhanced efficacy. These effects are reproducible using various nanocarriers (liposomes, polymeric and gold nanoparticles), thus providing a proof of concept that targeted nanotherapy can be a feasible strategy that can combat obesity and prevent its comorbidities.


Asunto(s)
Fármacos Antiobesidad/química , Portadores de Fármacos/química , Nanopartículas/química , Obesidad/tratamiento farmacológico , Inductores de la Angiogénesis/metabolismo , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Animales , Fármacos Antiobesidad/farmacología , Liberación de Fármacos , Oro/química , Humanos , Lípidos/química , Polímeros/química , Nanomedicina Teranóstica , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA