Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 106(22): 9109-14, 2009 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-19451637

RESUMEN

Tight control of cellular redox homeostasis is essential for protection against oxidative damage and for maintenance of normal metabolism as well as redox signaling events. Under oxidative stress conditions, the tripeptide glutathione can switch from its reduced form (GSH) to oxidized glutathione disulfide (GSSG), and thus, forms an important cellular redox buffer. GSSG is normally reduced to GSH by 2 glutathione reductase (GR) isoforms encoded in the Arabidopsis genome, cytosolic GR1 and GR2 dual-targeted to chloroplasts and mitochondria. Measurements of total GR activity in leaf extracts of wild-type and 2 gr1 deletion mutants revealed that approximately 65% of the total GR activity is attributed to GR1, whereas approximately 35% is contributed by GR2. Despite the lack of a large share in total GR activity, gr1 mutants do not show any informative phenotype, even under stress conditions, and thus, the physiological impact of GR1 remains obscure. To elucidate its role in plants, glutathione-specific redox-sensitive GFP was used to dynamically measure the glutathione redox potential (E(GSH)) in the cytosol. Using this tool, it is shown that E(GSH) in gr1 mutants is significantly shifted toward more oxidizing conditions. Surprisingly, dynamic reduction of GSSG formed during induced oxidative stress in gr1 mutants is still possible, although significantly delayed compared with wild-type plants. We infer that there is functional redundancy in this critical pathway. Integrated biochemical and genetic assays identify the NADPH-dependent thioredoxin system as a backup system for GR1. Deletion of both, NADPH-dependent thioredoxin reductase A and GR1, prevents survival due to a pollen lethal phenotype.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas de Ciclo Celular/metabolismo , Glutatión Reductasa/metabolismo , NADP/metabolismo , Tiorredoxinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Citosol/metabolismo , Fertilidad , Técnicas de Inactivación de Genes , Disulfuro de Glutatión/metabolismo , Glutatión Reductasa/genética , Polen/enzimología , Polen/genética , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo
2.
Plant Cell ; 19(6): 1851-65, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17586656

RESUMEN

NADPH-dependent thioredoxin reductases (NTRs) are key regulatory enzymes determining the redox state of the thioredoxin system. The Arabidopsis thaliana genome has two genes coding for NTRs (NTRA and NTRB), both of which encode mitochondrial and cytosolic isoforms. Surprisingly, plants of the ntra ntrb knockout mutant are viable and fertile, although with a wrinkled seed phenotype, slower plant growth, and pollen with reduced fitness. Thus, in contrast with mammals, our data demonstrate that neither cytosolic nor mitochondrial NTRs are essential in plants. Nevertheless, in the double mutant, the cytosolic thioredoxin h3 is only partially oxidized, suggesting an alternative mechanism for thioredoxin reduction. Plant growth in ntra ntrb plants is hypersensitive to buthionine sulfoximine (BSO), a specific inhibitor of glutathione biosynthesis, and thioredoxin h3 is totally oxidized under this treatment. Interestingly, this BSO-mediated growth arrest is fully reversible, suggesting that BSO induces a growth arrest signal but not a toxic accumulation of activated oxygen species. Moreover, crossing ntra ntrb with rootmeristemless1, a mutant blocked in root growth due to strongly reduced glutathione synthesis, led to complete inhibition of both shoot and root growth, indicating that either the NTR or the glutathione pathway is required for postembryonic activity in the apical meristem.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Glutatión/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/metabolismo , Antocianinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diploidia , Activación Enzimática , Fertilidad , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Glutarredoxinas , Modelos Biológicos , Mutación/genética , Oxidación-Reducción , Estrés Oxidativo , Oxidorreductasas/metabolismo , Fenotipo , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Polen/metabolismo , Plantones/metabolismo , Semillas/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética
3.
Proteomics ; 6(24): 6528-37, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17163439

RESUMEN

Thioredoxin (TRX) is a small multifunctional protein with a disulfide active site involved in redox regulation. To gain insight into the numerous proteins able to interact with thioredoxin in Arabidopsis thaliana, we have compared three different proteomic procedures. In the two first approaches targets present in a mixture of soluble leaf proteins were reduced by the cytosolic TRX h3, then the new thiols were labeled either with radioactive iodoacetamide allowing specific detection (first method) or with a biotinylated thiol-specific compound allowing selective retention on an avidin column (second method). The third method involved a chromatography on a mutated TRX h3 column, which is able to covalently trap potential targets. All together, the three approaches enabled us to propose 73 proteins as being TRX-linked, and involved in various processes. Methods 1 and 3 were not only efficient with respectively 47 and 41 potential targets, but also complementary as only 26% of the targets were identified by both procedures. The second method with only 12 proteins was less efficient. However, this approach, as well as the first one when coupled with differential labeling of the cysteine residues, could be more informative about the cysteines involved in the thiol-disulfide interchange.


Asunto(s)
Proteínas de Arabidopsis/aislamiento & purificación , Proteínas de Arabidopsis/metabolismo , Proteómica/métodos , Tiorredoxinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Biotina , Cromatografía de Afinidad , Electroforesis en Gel Bidimensional , Radioisótopos de Yodo , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tiorredoxinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA