Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 34(4): 1207-1225, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35018475

RESUMEN

The spatiotemporal development of somatic tissues of the anther lobe is necessary for successful fertile pollen production. This process is mediated by many transcription factors acting through complex, multi-layered networks. Here, our analysis of functional knockout mutants of interacting basic helix-loop-helix genes Ms23, Ms32, basic helix-loop-helix 122 (bHLH122), and bHLH51 in maize (Zea mays) established that male fertility requires all four genes, expressed sequentially in the tapetum (TP). Not only do they regulate each other, but also they encode proteins that form heterodimers that act collaboratively to guide many cellular processes at specific developmental stages. MS23 is confirmed to be the master factor, as the ms23 mutant showed the earliest developmental defect, cytologically visible in the TP, with the most drastic alterations in premeiotic gene expression observed in ms23 anthers. Notably, the male-sterile ms23, ms32, and bhlh122-1 mutants lack 24-nt phased secondary small interfering RNAs (phasiRNAs) and the precursor transcripts from the corresponding 24-PHAS loci, while the bhlh51-1 mutant has wild-type levels of both precursors and small RNA products. Multiple lines of evidence suggest that 24-nt phasiRNA biogenesis primarily occurs downstream of MS23 and MS32, both of which directly activate Dcl5 and are required for most 24-PHAS transcription, with bHLH122 playing a distinct role in 24-PHAS transcription.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Zea mays , Regulación de la Expresión Génica de las Plantas/genética , Polen/genética , Reproducción , Factores de Transcripción/genética , Zea mays/genética
2.
Nat Plants ; 7(1): 34-41, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33398155

RESUMEN

Although plants are able to withstand a range of environmental conditions, spikes in ambient temperature can impact plant fertility causing reductions in seed yield and notable economic losses1,2. Therefore, understanding the precise molecular mechanisms that underpin plant fertility under environmental constraints is critical to safeguarding future food production3. Here, we identified two Argonaute-like proteins whose activities are required to sustain male fertility in maize plants under high temperatures. We found that MALE-ASSOCIATED ARGONAUTE-1 and -2 associate with temperature-induced phased secondary small RNAs in pre-meiotic anthers and are essential to controlling the activity of retrotransposons in male meiocyte initials. Biochemical and structural analyses revealed how male-associated Argonaute activity and its interaction with retrotransposon RNA targets is modulated through the dynamic phosphorylation of a set of highly conserved, surface-located serine residues. Our results demonstrate that an Argonaute-dependent, RNA-guided surveillance mechanism is critical in plants to sustain male fertility under environmentally constrained conditions, by controlling the mutagenic activity of transposons in male germ cells.


Asunto(s)
Elementos Transponibles de ADN/genética , Zea mays/genética , Producción de Cultivos , Elementos Transponibles de ADN/fisiología , Fertilidad , Respuesta al Choque Térmico , Plantas Modificadas Genéticamente , Polen/crecimiento & desarrollo , Polen/fisiología , Proteómica , Zea mays/crecimiento & desarrollo , Zea mays/fisiología
3.
Science ; 330(6010): 1540-3, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21148391

RESUMEN

Many plant pathogens, including those in the lineage of the Irish potato famine organism Phytophthora infestans, evolve by host jumps followed by specialization. However, how host jumps affect genome evolution remains largely unknown. To determine the patterns of sequence variation in the P. infestans lineage, we resequenced six genomes of four sister species. This revealed uneven evolutionary rates across genomes with genes in repeat-rich regions showing higher rates of structural polymorphisms and positive selection. These loci are enriched in genes induced in planta, implicating host adaptation in genome evolution. Unexpectedly, genes involved in epigenetic processes formed another class of rapidly evolving residents of the gene-sparse regions. These results demonstrate that dynamic repeat-rich genome compartments underpin accelerated gene evolution following host jumps in this pathogen lineage.


Asunto(s)
Evolución Molecular , Genoma , Especificidad del Huésped/genética , Phytophthora infestans/genética , Phytophthora infestans/patogenicidad , Phytophthora/genética , Enfermedades de las Plantas/parasitología , Adaptación Fisiológica/genética , Secuencia de Aminoácidos , Biología Computacional , Variaciones en el Número de Copia de ADN , Epistasis Genética , Genes , Interacciones Huésped-Parásitos , Solanum lycopersicum/parasitología , Datos de Secuencia Molecular , Phytophthora/clasificación , Phytophthora/patogenicidad , Phytophthora/fisiología , Phytophthora infestans/clasificación , Phytophthora infestans/fisiología , Polimorfismo de Nucleótido Simple , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Selección Genética , Análisis de Secuencia de ADN , Solanum tuberosum/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA