Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Acta Pharm Sin B ; 14(2): 455-467, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38322328

RESUMEN

According to the World Health Organization's world report on hearing, nearly 2.5 billion people worldwide will suffer from hearing loss by 2050, which may contribute to a severe impact on individual life quality and national economies. Sensorineural hearing loss (SNHL) occurs commonly as a result of noise exposure, aging, and ototoxic drugs, and is pathologically characterized by the impairment of mechanosensory hair cells of the inner ear, which is mainly triggered by reactive oxygen species accumulation, inflammation, and mitochondrial dysfunction. Though recent advances have been made in understanding the ability of cochlear repair and regeneration, there are still no effective therapeutic drugs for SNHL. Chinese herbal medicine which is widely distributed and easily accessible in China has demonstrated a unique curative effect against SNHL with higher safety and lower cost compared with Western medicine. Herein we present trends in research for Chinese herbal medicine for the treatment of SNHL, and elucidate their molecular mechanisms of action, to pave the way for further research and development of novel effective drugs in this field.

2.
J Pharm Biomed Anal ; 236: 115726, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37729746

RESUMEN

Raphani Semen (RS) encompasses two distinct application forms in Chinese clinical practice: raw RS (RRS) and stir-fried RS (SRS). They exhibit divergent drug properties and effects, as described in traditional Chinese medicine theory known as "Sheng shu yi zhi, sheng sheng shu jiang". The dissimilarity in RS's drug properties is intrinsically linked to alterations in its internal components during the stir-frying process. Previous studies have demonstrated that stir-frying renders myrosinase inactive, thereby preventing the enzymatic hydrolysis of glucosinolates in RS. However, the precise enzymatic hydrolysis pathway and products of glucosinolates remain unclear. Furthermore, it remains uncertain whether other components undergo changes influenced by endogenous enzymes. The objective of this study is to systematically analyze the chemical components disparities between RRS and SRS using high-performance liquid chromatography coupled with time-of-flight mass spectrometry (HPLC-TOF-MS). Additionally, it seeks to elucidate the potential transformation pathways of multiple components from an enzymatic hydrolysis perspective. We have developed a sensitive and efficient high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (HPLC-QQQ-MS) method for quantifying the content of 5 characteristic components, including glucoraphenin, sinapine thiocyanate, sulforaphene, sinapic acid, and 3',6-disinapoylsucrose. Based on retention time and MS spectra, we have identified 19 characteristic components in both SRS and RRS, encompassing glucosinolates and sulfur-containing derivatives, oligosaccharide esters, and small-molecule phenolic acids. Notably, 18 of these components undergo changes during the enzymatic hydrolysis process, leading to the identification of 4 transformation pathways: glucoraphenin, 6-sinapoylglucoraphenin, 3',6-disinapoylsucrose and ß-D-(3,4-disinapoyl) furanofructosyl-α-D-(6-sinapisoyl) glucoside, along with 3'-O-sinapoyl-6-O-feruloylsucrose. Quantitative analysis reveals significant differences, including lower levels of glucoraphenin in RRS compared to SRS, higher sulforaphene and sinapic acid levels in RRS, while sinapine thiocyanate and 3',6-disinapoylsucrose remain unchanged before and after stir-frying. The results of this study highlight distinct chemical compositions between RRS and SRS. Additionally, the method of characterization and content determination constructed in this paper has strong practical value and provides a useful approach for comprehensively evaluating the chemical composition and quality of RS.

3.
Int J Biol Macromol ; 237: 124146, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36965565

RESUMEN

Bupleuri Radix (BR), as a well-known plant medicine of relieving exterior syndrome, has a long history of usage in China. Bupleuri Radix Polysaccharide (BRP), as the main component and an important bioactive substance of BR, has a variety of pharmacological activities, including immunoregulation, antioxidant, antitumor, anti-diabetic and anti-aging, etc. In this review, the advancements on extraction, purification, structure characteristics, biological activities and pharmaceutical application of BRP from different sources (Bupleurum chinense DC., Bupleurum scorzonerifolium Willd., Bupleurum falcatum L. and Bupleurum smithii Woiff. var. Parvifolium Shan et Y. Li.) are summarized. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research on BRP, and new valuable insights for the future researches of BRP are proposed.


Asunto(s)
Bupleurum , Medicamentos Herbarios Chinos , Raíces de Plantas/química , Bupleurum/química , Factores Inmunológicos/análisis , Preparaciones Farmacéuticas , Medicamentos Herbarios Chinos/química
4.
J Ethnopharmacol ; 294: 115387, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35580770

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Raphani Semen (Lai Fu-zi in Chinese, RS), the dried seeds of Raphanus sativus L., is a traditional Chinese herbal medicine. RS has long been used for eliminating bloating and digestion, antitussive, expectorant and anti-asthmatic in clinical treatment of traditional Chinese medicine. AIM OF THE STUDY: This review provides a critical and comprehensive summary of traditional uses, phytochemistry, transformation of ingredients and pharmacology of RS based on research data that have been reported, aiming at providing a basis for further study on RS. MATERIALS AND METHODS: The search terms "Raphani Semen", "the seeds of Raphanus sativus L." and "radish seed" were used to obtain the information from electronic databases such as Web of Science, China National Knowledge Infrastructure, PubMed and other web search instruments. Traditional uses, phytochemistry, transformation of ingredients and pharmacology of RS were summarized. RESULTS: RS has been traditionally used to treat food dyspeptic retention, distending pain in the epigastrium and abdomen, constipation, diarrhea and dysentery, panting, and cough with phlegm congestion in the clinical practice. The chemical constituents of RS include glucosinolates and sulfur-containing derivatives, phenylpropanoid sucrosides, small organic acids and derivatives, flavone glycosides, alkaloids, terpenoids, steroids, oligosaccharides and others. Among them, glucosinolates can be transformated to isothiocyanates by plant myrosinase or the intestinal flora, which display a variety of activities, such as anti-tumor, anti-inflammatory, antioxidant, antibacterial, treatment of metabolic diseases, central nervous system protection, anti-osteoporosis. RS has a variety of pharmacological activities, including treatment of metabolic diseases, anti-inflammatory, anti-tumor, antioxidant, antibacterial, antihypertensive, central nervous system protection, anti-osteoporosis, etc. This review will provide useful insight for exploration, further study and precise medication of RS in the future. CONCLUSIONS: According to its traditional uses, phytochemistry, transformation of ingredients and pharmacology, RS is regarded as a promising medical plant with various chemical compounds and numerous pharmacological activities. However, the material bases and mechanisms of traditional effect of RS need further study.


Asunto(s)
Raphanus , Antibacterianos/uso terapéutico , Antioxidantes/farmacología , Etnofarmacología , Glucosinolatos , Medicina Tradicional China , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Semillas
5.
Drug Metab Dispos ; 39(9): 1609-19, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21690265

RESUMEN

(1S,2S,3S,4R,5S)-5-[4-Chloro-3-(4-ethoxybenzyl)phenyl]-1-hydroxymethyl-6,8-dioxabicyclo[3.2.1]octane-2,3,4-triol (PF-04971729), a potent and selective inhibitor of the sodium-dependent glucose cotransporter 2, is currently in phase 2 trials for the treatment of diabetes mellitus. This article describes the preclinical species and in vitro human disposition characteristics of PF-04971729 that were used in experiments performed to support the first-in-human study. Plasma clearance was low in rats (4.04 ml · min(-1) · kg(-1)) and dogs (1.64 ml · min(-1) · kg(-1)), resulting in half-lives of 4.10 and 7.63 h, respectively. Moderate to good bioavailability in rats (69%) and dogs (94%) was observed after oral dosing. The in vitro biotransformation profile of PF-04971729 in liver microsomes and cryopreserved hepatocytes from rat, dog, and human was qualitatively similar; prominent metabolic pathways included monohydroxylation, O-deethylation, and glucuronidation. No human-specific metabolites of PF-04971729 were detected in in vitro studies. Reaction phenotyping studies using recombinant enzymes indicated a role of CYP3A4/3A5, CYP2D6, and UGT1A9/2B7 in the metabolism of PF-04971729. No competitive or time-dependent inhibition of the major human cytochrome P450 enzymes was discerned with PF-04971729. Inhibitory effects against the organic cation transporter 2-mediated uptake of [(14)C]metformin by PF-04971729 also were very weak (IC(50) = ∼900 µM). Single-species allometric scaling of rat pharmacokinetics of PF-04971729 was used to predict human clearance, distribution volume, and oral bioavailability. Human pharmacokinetic predictions were consistent with the potential for a low daily dose. First-in-human studies after oral administration indicated that the human pharmacokinetics/dose predictions for PF-04971729 were in the range that is likely to yield a favorable pharmacodynamic response.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/farmacocinética , Proteínas de Transporte de Sodio-Glucosa/antagonistas & inhibidores , Administración Oral , Adulto , Animales , Disponibilidad Biológica , Biotransformación , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Células CACO-2 , Estudios Cruzados , Inhibidores Enzimáticos del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Perros , Evaluación Preclínica de Medicamentos , Femenino , Glucuronosiltransferasa/metabolismo , Células HEK293 , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Hepatocitos/metabolismo , Humanos , Absorción Intestinal , Masculino , Microsomas Hepáticos/enzimología , Microsomas Hepáticos/metabolismo , Persona de Mediana Edad , Unión Proteica , Ratas , Ratas Sprague-Dawley , Proteínas de Transporte de Sodio-Glucosa/metabolismo , Adulto Joven
6.
J Med Chem ; 54(8): 2952-60, 2011 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21449606

RESUMEN

Compound 4 (PF-04971729) belongs to a new class of potent and selective sodium-dependent glucose cotransporter 2 inhibitors incorporating a unique dioxa-bicyclo[3.2.1]octane (bridged ketal) ring system. In this paper we present the design, synthesis, preclinical evaluation, and human dose predictions related to 4. This compound demonstrated robust urinary glucose excretion in rats and an excellent preclinical safety profile. It is currently in phase 2 clinical trials and is being evaluated for the treatment of type 2 diabetes.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Descubrimiento de Drogas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Área Bajo la Curva , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacocinética , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Modelos Moleculares , Ratas
7.
Chem Res Toxicol ; 23(6): 1115-26, 2010 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-20507089

RESUMEN

The synthesis and structure-activity relationship studies on 5-trifluoromethylpyrido[4,3-d]pyrimidin-4(3H)-ones as antagonists of the human calcium receptor (CaSR) have been recently disclosed [ Didiuk et al. ( 2009 ) Bioorg. Med. Chem. Lett. 19 , 4555 - 4559 ). On the basis of its pharmacology and disposition attributes, (R)-2-(2-hydroxyphenyl)-3-(1-phenylpropan-2-yl)-5-(trifluoromethyl)pyrido[4,3-d]pyrimidin-4(3H)-one (1) was considered for rapid advancement to first-in-human (FIH) trials to mitigate uncertainty surrounding the pharmacokinetic/pharmacodynamic (PK/PD) predictions for a short-acting bone anabolic agent. During the course of metabolic profiling, however, glutathione (GSH) conjugates of 1 were detected in human liver microsomes in an NADPH-dependent fashion. Characterization of the GSH conjugate structures allowed insight(s) into the bioactivation pathway, which involved CYP3A4-mediated phenol ring oxidation to the catechol, followed by further oxidation to the electrophilic ortho-quinone species. While the reactive metabolite (RM) liability raised concerns around the likelihood of a potential toxicological outcome, a more immediate program goal was establishing confidence in human PK predictions in the FIH study. Furthermore, the availability of a clinical biomarker (serum parathyroid hormone) meant that PD could be assessed side by side with PK, an ideal scenario for a relatively unprecedented pharmacologic target. Consequently, progressing 1 into the clinic was given a high priority, provided the compound demonstrated an adequate safety profile to support FIH studies. Despite forming identical RMs in rat liver microsomes, no clinical or histopathological signs prototypical of target organ toxicity were observed with 1 in in vivo safety assessments in rats. Compound 1 was also devoid of metabolism-based mutagenicity in in vitro (e.g., Salmonella Ames) and in vivo assessments (micronuclei induction in bone marrow) in rats. Likewise, metabolism-based studies (e.g., evaluation of detoxicating routes of clearance and exhaustive PK/PD studies in animals to prospectively predict the likelihood of a low human efficacious dose) were also conducted, which mitigated the risks of idiosyncratic toxicity to a large degree. In parallel, medicinal chemistry efforts were initiated to identify additional compounds with a complementary range of human PK predictions, which would maximize the likelihood of achieving the desired PD effect in the clinic. The back-up strategy also incorporated an overarching goal of reducing/eliminating reactive metabolite formation observed with 1. Herein, the collective findings from our discovery efforts in the CaSR program, which include the incorporation of appropriate derisking steps when dealing with RM issues are summarized.


Asunto(s)
Anabolizantes/química , Anabolizantes/metabolismo , Osteoporosis/tratamiento farmacológico , Piridinas/química , Piridinas/metabolismo , Pirimidinonas/química , Pirimidinonas/metabolismo , Receptores Sensibles al Calcio/antagonistas & inhibidores , Anabolizantes/efectos adversos , Animales , Cristalografía por Rayos X , Humanos , Piridinas/efectos adversos , Pirimidinonas/efectos adversos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA