Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Epileptic Disord ; 25(3): 406-409, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36938890

RESUMEN

Neuromodulation in epilepsy is a proven treatment for people with drug-resistant focal epilepsy. Dual device therapies are increasingly utilized in people with drug-resistant epilepsy. Vagus nerve stimulation (VNS) and deep brain stimulation (DBS) target the thalamus involving the primary neurobiological network in patients with genetic generalized epilepsy (GGE). We report a novel case of combined neuromodulation in a patient with drug-resistant GGE who achieved a partial response with seizure reduction after VNS implantation yet following VNS-DBS polyneurostimulation gradually achieved prolonged seizure freedom. We speculate that by combining the indirect activating effects of VNS with the direct inhibitory effects of DBS, this may provide synergy to thalamic modulated networks. We hypothesize a "rational polytherapy" may exist in some patients with GGE undergoing dual neuromodulation.


Asunto(s)
Estimulación Encefálica Profunda , Epilepsia Refractaria , Epilepsia Generalizada , Epilepsia , Estimulación del Nervio Vago , Humanos , Epilepsia Refractaria/terapia , Epilepsia/terapia , Epilepsia Generalizada/terapia , Convulsiones/terapia , Tálamo , Resultado del Tratamiento , Femenino , Adulto
2.
Neurosurg Clin N Am ; 34(2): 247-257, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36906331

RESUMEN

Laser interstitial thermal therapy is an important new technique with a diverse use in epilepsy. This article gives an up-to-date evaluation of the current use of the technique within epilepsy, as well as provides some guidance to novice users appropriate clinical cases for its use.


Asunto(s)
Epilepsia , Hipertermia Inducida , Terapia por Láser , Humanos , Terapia por Láser/métodos , Imagen por Resonancia Magnética/métodos , Epilepsia/cirugía , Hipertermia Inducida/métodos , Rayos Láser
5.
Epilepsy Res ; 182: 106916, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35367691

RESUMEN

Neuromodulation is an increasingly utilized therapy for the treatment of people with drug-resistant epilepsy. To date, the most common and effective target has been the thalamus, which is known to play a key role in multiple forms of epilepsy. Neuroimaging has facilitated rapid developments in the understanding of functional targets, surgical and programming techniques, and the effects of thalamic stimulation. In this review, the role of neuroimaging in neuromodulation is explored. First, the structural and functional changes of the thalamus in common epilepsy syndromes are discussed as the rationale for neuromodulation of the thalamus. Next, methods for imaging different thalamic nuclei are presented, as well as rationale for the need of direct surgical targeting rather than reliance on traditional stereotactic coordinates. Lastly, we discuss the potential role of neuroimaging in assessing the effects of thalamic stimulation and as a potential biomarker for neuromodulation outcomes.


Asunto(s)
Conectoma , Epilepsia Refractaria , Epilepsia , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Epilepsia/diagnóstico por imagen , Epilepsia/terapia , Humanos , Neuroimagen , Tálamo/diagnóstico por imagen
6.
Ann Neurol ; 91(5): 613-628, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35165921

RESUMEN

OBJECTIVE: With a growing appreciation for interindividual anatomical variability and patient-specific brain connectivity, advanced imaging sequences offer the opportunity to directly visualize anatomical targets for deep brain stimulation (DBS). The lack of quantitative evidence demonstrating their clinical utility, however, has hindered their broad implementation in clinical practice. METHODS: Using fast gray matter acquisition T1 inversion recovery (FGATIR) sequences, the present study identified a thalamic hypointensity that holds promise as a visual marker in DBS. To validate the clinical utility of the identified hypointensity, we retrospectively analyzed 65 patients (26 female, mean age = 69.1 ± 12.7 years) who underwent DBS in the treatment of essential tremor. We characterized its neuroanatomical substrates and evaluated the hypointensity's ability to predict clinical outcome using stimulation volume modeling and voxelwise mapping. Finally, we determined whether the hypointensity marker could predict symptom improvement on a patient-specific level. RESULTS: Anatomical characterization suggested that the identified hypointensity constituted the terminal part of the dentatorubrothalamic tract. Overlap between DBS stimulation volumes and the hypointensity in standard space significantly correlated with tremor improvement (R2  = 0.16, p = 0.017) and distance to hotspots previously reported in the literature (R2  = 0.49, p = 7.9e-4). In contrast, the amount of variance explained by other anatomical atlas structures was reduced. When accounting for interindividual neuroanatomical variability, the predictive power of the hypointensity increased further (R2  = 0.37, p = 0.002). INTERPRETATION: Our findings introduce and validate a novel imaging-based marker attainable from FGATIR sequences that has the potential to personalize and inform targeting and programming in DBS for essential tremor. ANN NEUROL 2022;91:613-628.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Anciano , Anciano de 80 o más Años , Estimulación Encefálica Profunda/métodos , Imagen de Difusión Tensora/métodos , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/terapia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Tálamo/diagnóstico por imagen
7.
Neuroradiol J ; 35(2): 203-212, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34340623

RESUMEN

OBJECTIVE: Observational studies utilising diffusion tractography have suggested a common mechanism for tremor alleviation in deep brain stimulation for essential tremor: the decussating portion of the dentato-rubro-thalamic tract. We hypothesised that directional stimulation of the dentato-rubro-thalamic tract would result in greater tremor improvement compared to sham programming, as well as comparable improvement as more tedious standard-of-care programming. METHODS: A prospective, blinded crossover trial was performed to assess the feasibility, safety and outcomes of programming based solely on dentato-rubro-thalamic tract anatomy. Using magnetic resonance imaging diffusion-tractography, the dentato-rubro-thalamic tract was identified and a connectivity-based treatment setting was derived by modelling a volume of tissue activated using directional current steering oriented towards the dentato-rubro-thalamic tract centre. A sham setting was created at approximately 180° opposite the connectivity-based treatment. Standard-of-care programming at 3 months was compared to connectivity-based treatment and sham settings that were blinded to the programmer. The primary outcome measure was percentage improvement in the Fahn-Tolosa-Marín tremor rating score compared to the preoperative baseline. RESULTS: Among the six patients, tremor rating scores differed significantly among the three experimental conditions (P=0.030). The mean tremor rating score improvement was greater with the connectivity-based treatment settings (64.6% ± 14.3%) than with sham (44.8% ± 18.6%; P=0.031) and standard-of-care programming (50.7% ± 19.2%; P=0.062). The distance between the centre of the dentato-rubro-thalamic tract and the volume of tissue activated inversely correlated with the percentage improvement in the tremor rating score (R2=0.24; P=0.04). No significant adverse events were encountered. CONCLUSIONS: Using a blinded, crossover trial design, we have shown the technical feasibility, safety and potential efficacy of connectivity-based stimulation settings in deep brain stimulation for treatment of essential tremor.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Estimulación Encefálica Profunda/métodos , Temblor Esencial/cirugía , Temblor Esencial/terapia , Humanos , Estudios Prospectivos , Tálamo/diagnóstico por imagen , Resultado del Tratamiento , Temblor/cirugía
8.
Neuroimage Clin ; 32: 102846, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34624639

RESUMEN

BACKGROUND AND PURPOSE: Deep brain stimulation (DBS) is the most common surgical treatment for essential tremor (ET), yet there is variation in outcome and stimulation targets. This study seeks to consolidate proposed stimulation "sweet spots," as well as assess the value of structural connectivity in predicting treatment outcomes. MATERIALS AND METHODS: Ninety-seven ET individuals with unilateral thalamic DBS were retrospectively included. Using normative brain connectomes, structural connectivity measures were correlated with the percentage improvement in contralateral tremor, based on the Fahn-Tolosa-Marin tremor rating scale (TRS), after parameter optimization (range 3.1-12.9 months) using a leave-one-out cross-validation in 83 individuals. The predictive feature map was used for cross-validation in a separate cohort of 14 ET individuals treated at another center. Lastly, estimated volumes of tissue activated (VTA) were used to assess a treatment "sweet spot," which was compared to seven previously reported stimulation sweet spots and their relationship to the tract identified by the predictive feature map. RESULTS: In the training cohort, structural connectivity between the VTA and dentato-rubro-thalamic tract (DRTT) correlated with contralateral tremor improvement (R = 0.41; p < 0.0001). The same connectivity profile predicted outcomes in a separate validation cohort (R = 0.59; p = 0.028). The predictive feature map represented the anatomical course of the DRTT, and all seven analyzed sweet spots overlapped the predictive tract (DRTT). CONCLUSIONS: Our results strongly support the possibility that structural connectivity is a predictor of contralateral tremor improvement in ET DBS. The results suggest the future potential for a patient-specific functionally based surgical target. Finally, the results showed convergence in "sweet spots" suggesting the importance of the DRTT to the outcome.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/terapia , Humanos , Estudios Retrospectivos , Tálamo/diagnóstico por imagen , Resultado del Tratamiento , Temblor
9.
Neuroradiol J ; 34(6): 667-675, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34121497

RESUMEN

BACKGROUND AND PURPOSE: Deep brain stimulation of the thalamus is an effective treatment for multiple neurological disorders. The centromedian and parafascicular nuclei are recently emerging targets for multiple conditions, such as epilepsy and Tourette syndrome; however, their limited visibility on conventional magnetic resonance imaging sequences has been a major obstacle. The goal of this study was to demonstrate the feasibility of a high-resolution and high-contrast targeting sequence for centromedian-parafascicular deep brain stimulation using a recently described magnetic resonance imaging sequence, three-dimensional edge-enhancing gradient echo. METHODS: The three-dimensional edge-enhancing gradient echo sequence was performed on a normal volunteer for a total of six acquisitions. Multi-image co-registration and averaging was performed by first co-registering each of the six scans and then averaging to produce an edge-enhancing gradient echo-multi-image co-registration and averaging scan. The averaging was also performed for two, three, four and five scans to assess the change in the signal-to-noise ratio and identify the ideal balance of image quality and scan time. RESULTS: The edge-enhancing gradient echo-multi-image co-registration and averaging scan allowed clear boundary delineation of the centromedian and parafascicular nuclei. The signal-to-noise ratio increased as a function of increasing scan number, but the added gain was small beyond four scans for the imaging parameters used in this study. CONCLUSIONS: The recently described three-dimensional edge-enhancing gradient echo sequence provides an easily implementable approach, using widely available magnetic resonance imaging technology without complex post-processing techniques, to delineate centromedian and parafascicular nuclei for deep brain stimulation targeting.


Asunto(s)
Estimulación Encefálica Profunda , Epilepsia , Humanos , Imagen por Resonancia Magnética , Relación Señal-Ruido , Núcleos Talámicos , Tálamo/diagnóstico por imagen
10.
Brain ; 144(6): 1774-1786, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33889943

RESUMEN

The pathophysiology of dystonic tremor and essential tremor remains partially understood. In patients with medication-refractory dystonic tremor or essential tremor, deep brain stimulation (DBS) targeting the thalamus or posterior subthalamic area has evolved into a promising treatment option. However, the optimal DBS targets for these disorders remains unknown. This retrospective study explored the optimal targets for DBS in essential tremor and dystonic tremor using a combination of volumes of tissue activated estimation and functional and structural connectivity analyses. We included 20 patients with dystonic tremor who underwent unilateral thalamic DBS, along with a matched cohort of 20 patients with essential tremor DBS. Tremor severity was assessed preoperatively and approximately 6 months after DBS implantation using the Fahn-Tolosa-Marin Tremor Rating Scale. The tremor-suppressing effects of DBS were estimated using the percentage improvement in the unilateral tremor-rating scale score contralateral to the side of implantation. The optimal stimulation region, based on the cluster centre of gravity for peak contralateral motor score improvement, for essential tremor was located in the ventral intermediate nucleus region and for dystonic tremor in the ventralis oralis posterior nucleus region along the ventral intermediate nucleus/ventralis oralis posterior nucleus border (4 mm anterior and 3 mm superior to that for essential tremor). Both disorders showed similar functional connectivity patterns: a positive correlation between tremor improvement and involvement of the primary sensorimotor, secondary motor and associative prefrontal regions. Tremor improvement, however, was tightly correlated with the primary sensorimotor regions in essential tremor, whereas in dystonic tremor, the correlation was tighter with the premotor and prefrontal regions. The dentato-rubro-thalamic tract, comprising the decussating and non-decussating fibres, significantly correlated with tremor improvement in both dystonic and essential tremor. In contrast, the pallidothalamic tracts, which primarily project to the ventralis oralis posterior nucleus region, significantly correlated with tremor improvement only in dystonic tremor. Our findings support the hypothesis that the pathophysiology underpinning dystonic tremor involves both the cerebello-thalamo-cortical network and the basal ganglia-thalamo-cortical network. Further our data suggest that the pathophysiology of essential tremor is primarily attributable to the abnormalities within the cerebello-thalamo-cortical network. We conclude that the ventral intermediate nucleus/ventralis oralis posterior nucleus border and ventral intermediate nucleus region may be a reasonable DBS target for patients with medication-refractory dystonic tremor and essential tremor, respectively. Uncovering the pathophysiology of these disorders may in the future aid in further improving DBS outcomes.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Temblor Esencial/fisiopatología , Temblor Esencial/cirugía , Temblor/fisiopatología , Temblor/cirugía , Adulto , Trastornos Distónicos/complicaciones , Trastornos Distónicos/fisiopatología , Trastornos Distónicos/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiopatología , Núcleos Talámicos Posteriores/fisiopatología , Núcleos Talámicos Posteriores/cirugía , Estudios Retrospectivos , Tálamo/fisiopatología , Tálamo/cirugía , Temblor/etiología
11.
Acta Neurochir (Wien) ; 162(7): 1709-1720, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32388682

RESUMEN

BACKGROUND: Intraoperative stimulation (IS) mapping has become the preferred standard treatment for eloquent tumors as it permits a more accurate identification of functional areas, allowing surgeons to achieve higher extents of resection (EOR) and decrease postoperative morbidity. For lesions adjacent to the perirolandic area and descending motor tracts, mapping can be done with both awake craniotomy (AC) and under general anesthesia (GA). OBJECTIVE: We aimed to determine which anesthetic protocol-AC vs. GA-provides better patient outcomes by comparing EOR and postoperative morbidity for surgeries using IS mapping in gliomas located near or in motor areas of the brain. METHODS: A systematic literature search was carried out to identify relevant studies from 1983 to 2019. Seven databases were screened. A total of 2351 glioma patients from 17 studies were analyzed. RESULTS: A random-effects meta-analysis revealed a trend towards a higher mean EOR in AC [90.1% (95% C.I. 85.8-93.8)] than with GA [81.7% (95% C.I. 72.4-89.7)] (p = 0.06). Neurological deficits were divided by timing and severity for analysis. There was no significant difference in early neurological deficits [20.9% (95% C.I. 4.1-45.0) vs. 25.4% (95% C.I. 13.6-39.2)] (p = 0.74), late neurological deficits [17.1% (95% C.I. 0.0-50.0) vs. 3.8% (95% C.I. 1.1-7.6)] (p = 0.06), or in non-severe [28.4% (95% C.I. 0.0-88.5) vs. 20.1% (95% C.I. 7.1-32.2)] (p = 0.72), and severe morbidity [2.6% (95% C.I. 0.0-15.5) vs. 4.5% (95% C.I. 1.1-9.6)] (p = 0.89) between patients who underwent AC versus GA, respectively. CONCLUSION: Mapping during resection of gliomas located in or near the perirolandic area and descending motor tracts can be safely carried out with both AC and GA.


Asunto(s)
Anestesia General/métodos , Anestesia Local/métodos , Mapeo Encefálico/métodos , Neoplasias Encefálicas/cirugía , Craneotomía/métodos , Glioma/cirugía , Anestesia General/efectos adversos , Anestesia Local/efectos adversos , Humanos , Corteza Motora/cirugía , Vigilia
12.
World Neurosurg ; 139: e70-e77, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32302732

RESUMEN

BACKGROUND: Preoperative thalamic targeting methods have historically relied on indirect targeting techniques that do not fully account for variances in anatomy or for thalamic atrophy in epilepsy. We aimed to address variability noted between traditional indirect targeting and direct targeting methods for the anterior nucleus of the thalamus (ANT). METHODS: Fifteen consecutive patients undergoing ANT deep brain stimulator placement were evaluated (30 thalamic nuclei). Direct ANT targeting was performed using a fast gray matter acquisition T1 inversion recovery sequence and compared with standard stereotactic coordinates. Thalamic volumes were calculated for each patient, and degree of thalamic volume loss was assessed compared with matched control subjects. Vertex analysis was performed to assess shape changes in the thalamus compared with age- and sex-matched subjects. RESULTS: There was significant variation between direct and indirect targets in the y-axis and z-axis on both sides. On the left, the direct target was located at y = 2 ± 1.3 mm and z = 9.3 ± 1.8 mm (both P = 0.02). On the right, the direct target was located at y = 2.9 ± 1.8 mm and z = 9.2 ± 2 mm (both P ≤ 0.0003). There was no significant difference in the x-coordinate on either side (P > 0.5). Additionally, there was a correlation between thalamic volume and difference between direct and indirect targets in the y-axis and the z-axis. CONCLUSIONS: We showed a significant difference in direct and indirect targeting in the y-axis and z-axis when targeting the ANT for deep brain stimulation for epilepsy. This difference is correlated to thalamic volume, with a larger difference noted in patients with thalamic atrophy.


Asunto(s)
Núcleos Talámicos Anteriores/cirugía , Estimulación Encefálica Profunda , Epilepsia Refractaria/terapia , Neuroestimuladores Implantables , Procedimientos Neuroquirúrgicos/métodos , Implantación de Prótesis/métodos , Técnicas Estereotáxicas , Adolescente , Adulto , Anciano , Núcleos Talámicos Anteriores/diagnóstico por imagen , Atrofia , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Estudios Retrospectivos , Tálamo/diagnóstico por imagen , Tálamo/patología , Adulto Joven
13.
Neurosurgery ; 86(6): 860-872, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504849

RESUMEN

BACKGROUND: The subthalamic nucleus (STN), globus pallidus internus (GPi), and pedunculopontine nucleus (PPN) are effective targets for deep brain stimulation (DBS) in many pathological conditions. Previous literature has focused on appropriate stimulation targets and their relationships with functional neuroanatomic pathways; however, comprehensive anatomic dissections illustrating these nuclei and their connections are lacking. This information will provide insight into the anatomic basis of stimulation-induced DBS benefits and side effects. OBJECTIVE: To combine advanced cadaveric dissection techniques and ultrahigh field magnetic resonance imaging (MRI) to explore the anatomy of the STN, GPi, and PPN with their associated fiber pathways. METHODS: A total of 10 cadaveric human brains and 2 hemispheres of a cadaveric head were examined using fiber dissection techniques. The anatomic dissections were compared with 11.1 Tesla (T) structural MRI and 4.7 T MRI fiber tractography. RESULTS: The extensive connections of the STN (caudate nucleus, putamen, medial frontal cortex, substantia innominata, substantia nigra, PPN, globus pallidus externus (GPe), GPi, olfactory tubercle, hypothalamus, and mammillary body) were demonstrated. The connections of GPi to the thalamus, substantia nigra, STN, amygdala, putamen, PPN, and GPe were also illustrated. The PPN was shown to connect to the STN and GPi anteriorly, to the cerebellum inferiorly, and to the substantia nigra anteriorly and superiorly. CONCLUSION: This study demonstrates connections using combined anatomic microdissections, ultrahigh field MRI, and MRI tractography. The anatomic findings are analyzed in relation to various stimulation-induced clinical effects. Precise knowledge of neuroanatomy, anatomic relationships, and fiber connections of the STN, GPi, PPN will likely enable more effective targeting and improved DBS outcomes.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Disección/métodos , Globo Pálido/cirugía , Núcleo Tegmental Pedunculopontino/cirugía , Núcleo Subtalámico/cirugía , Tálamo/cirugía , Autopsia , Globo Pálido/diagnóstico por imagen , Globo Pálido/patología , Humanos , Imagen por Resonancia Magnética/métodos , Núcleo Tegmental Pedunculopontino/diagnóstico por imagen , Núcleo Tegmental Pedunculopontino/patología , Núcleo Subtalámico/diagnóstico por imagen , Núcleo Subtalámico/patología , Tálamo/diagnóstico por imagen , Tálamo/patología
15.
Neuroimage Clin ; 20: 1266-1273, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30318403

RESUMEN

OBJECTIVES: Traditional targeting methods for thalamic deep brain stimulation (DBS) performed to address tremor have predominantly relied on indirect atlas-based methods that focus on the ventral intermediate nucleus despite known variability in thalamic functional anatomy. Improvements in preoperative targeting may help maximize outcomes and reduce thalamic DBS-related complications. In this study, we evaluated the ability of thalamic parcellation with structural connectivity-based segmentation (SCBS) to predict tremor improvement following thalamic DBS. METHODS: In this retrospective analysis of 40 patients with essential tremor, hard segmentation of the thalamus was performed by using probabilistic tractography to assess structural connectivity to 7 cortical targets. The volume of tissue activated (VTA) was modeled in each patient on the basis of the DBS settings. The volume of overlap between the VTA and the 7 thalamic segments was determined and correlated with changes in preoperative and postoperative Fahn-Tolosa-Marin Tremor Rating Scale (TRS) scores by using multivariable linear regression models. RESULTS: A significant association was observed between greater VTA in the supplementary motor area (SMA) and premotor cortex (PMC) thalamic segment and greater improvement in TRS score when considering both the raw change (P = .001) and percentage change (P = .011). In contrast, no association was observed between change in TRS score and VTA in the primary motor cortex thalamic segment (P ≥ .19). CONCLUSIONS: Our data suggest that greater VTA in the thalamic SMA/PMC segment during thalamic DBS was associated with significant improvement in TRS score in patients with tremor. These findings support the potential role of thalamic SCBS as an independent predictor of tremor improvement in patients who receive thalamic DBS.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial/fisiopatología , Tálamo/fisiopatología , Temblor/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Estimulación Encefálica Profunda/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento
16.
J Neurosurg ; 130(3): 716-732, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29726781

RESUMEN

OBJECTIVE: Despite the extensive use of the subthalamic nucleus (STN) as a deep brain stimulation (DBS) target, unveiling the extensive functional connectivity of the nucleus, relating its structural connectivity to the stimulation-induced adverse effects, and thus optimizing the STN targeting still remain challenging. Mastering the 3D anatomy of the STN region should be the fundamental goal to achieve ideal surgical results, due to the deep-seated and obscure position of the nucleus, variable shape and relatively small size, oblique orientation, and extensive structural connectivity. In the present study, the authors aimed to delineate the 3D anatomy of the STN and unveil the complex relationship between the anatomical structures within the STN region using fiber dissection technique, 3D reconstructions of high-resolution MRI, and fiber tracking using diffusion tractography utilizing a generalized q-sampling imaging (GQI) model. METHODS: Fiber dissection was performed in 20 hemispheres and 3 cadaveric heads using the Klingler method. Fiber dissections of the brain were performed from all orientations in a stepwise manner to reveal the 3D anatomy of the STN. In addition, 3 brains were cut into 5-mm coronal, axial, and sagittal slices to show the sectional anatomy. GQI data were also used to elucidate the connections among hubs within the STN region. RESULTS: The study correlated the results of STN fiber dissection with those of 3D MRI reconstruction and tractography using neuronavigation. A 3D terrain model of the subthalamic area encircling the STN was built to clarify its anatomical relations with the putamen, globus pallidus internus, globus pallidus externus, internal capsule, caudate nucleus laterally, substantia nigra inferiorly, zona incerta superiorly, and red nucleus medially. The authors also describe the relationship of the medial lemniscus, oculomotor nerve fibers, and the medial forebrain bundle with the STN using tractography with a 3D STN model. CONCLUSIONS: This study examines the complex 3D anatomy of the STN and peri-subthalamic area. In comparison with previous clinical data on STN targeting, the results of this study promise further understanding of the structural connections of the STN, the exact location of the fiber compositions within the region, and clinical applications such as stimulation-induced adverse effects during DBS targeting.


Asunto(s)
Microcirugia/métodos , Fibras Nerviosas , Neuronavegación/métodos , Procedimientos Neuroquirúrgicos/métodos , Núcleo Subtalámico/anatomía & histología , Núcleo Subtalámico/cirugía , Encéfalo/anatomía & histología , Encéfalo/cirugía , Cadáver , Estimulación Encefálica Profunda , Imagen de Difusión Tensora , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Núcleo Subtalámico/diagnóstico por imagen , Tálamo/anatomía & histología , Tálamo/cirugía
17.
Neuroradiology ; 60(3): 303-309, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29307012

RESUMEN

PURPOSE: Deep brain stimulation is a common treatment for medication-refractory essential tremor. Current coordinate-based targeting methods result in variable outcomes due to variation in thalamic structure and the optimal patient-specific functional location. The purpose of this study was to compare the coordinate-based pre-operative targets to patient-specific thalamic segmentation utilizing a probabilistic tractography methodology. METHODS: Using available diffusion MRI of 32 subjects from the Human Connectome Project database, probabilistic tractography was performed. Each thalamic voxel was coded based on one of six predefined cortical targets. The segmentation results were analyzed and compared to a 2-mm spherical target centered at the coordinate-based location of the ventral intermediate thalamic nucleus. RESULTS: The traditional coordinate-based target had maximal overlap with the junction of the region most connected to primary motor cortex (M1) (36.6 ± 25.7% of voxels on left; 58.1 ± 28.5% on right) and the area connected to the supplementary motor area/premotor cortex (SMA/PMC) (44.9 ± 21.7% of voxels on left; 28.9 ± 22.2% on right). There was a within-subject coefficient of variation from right-to-left of 69.4 and 63.1% in the volume of overlap with the SMA/PMC and M1 regions, respectively. CONCLUSION: Thalamic segmentation based on structural connectivity measures is a promising technique that may enhance traditional targeting methods by generating reproducible, patient-specific pre-operative functional targets. Our results highlight the problematic intra- and inter-subject variability of indirect, coordinate-based targets. Future prospective clinical studies will be needed to validate this targeting methodology in essential tremor patients.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Imagen de Difusión Tensora/métodos , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/cirugía , Tálamo/diagnóstico por imagen , Adulto , Temblor Esencial/fisiopatología , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Cuidados Preoperatorios , Tálamo/fisiopatología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA