Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Nutr ; 62(3): 1309-1322, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36539620

RESUMEN

PURPOSE: B vitamins are required for the complex regulation of homocysteine and one-carbon (1C) metabolism. Nutritional supplements are frequently used by older adults to counter nutritional inadequacies. However, the postprandial use of B vitamins from supplements in 1C metabolism may be altered with age owing to impaired nutrient absorption and metabolic regulation. Despite implications for health and nutritional status, postprandial 1C metabolite responses have not been characterised in older adults. METHODS: Healthy older (n = 20, 65-76 years) and younger (n = 20, 19-30 years) participants were recruited through online and printed advertisements in Auckland, New Zealand. Participants consumed a multivitamin and mineral supplement with a standard breakfast meal. Blood samples were collected at baseline and hourly for 4 h following ingestion. Plasma 1C metabolites (betaine, choline, cysteine, dimethylglycine, glycine, methionine, serine) were quantified using liquid chromatography coupled with mass spectrometry. Serum homocysteine, folate and vitamin B12 were quantified on a Cobas e411 autoanalyzer. RESULTS: Older adults had higher fasting homocysteine concentrations (older: 14.0 ± 2.9 µmol/L; younger: 12.2 ± 2.5 µmol/L; p = 0.036) despite higher folate (older: 36.7 ± 17.4 nmol/L; younger: 21.6 ± 7.6 nmol/L; p < 0.001) and similar vitamin B12 concentrations (p = 0.143) to younger adults. However, a similar postprandial decline in homocysteine was found in older and younger subjects in response to the combined meal and supplement. Except for a faster decline of cystathionine in older adults (p = 0.003), the postprandial response of other 1C metabolites was similar between young and older adults. CONCLUSION: Healthy older adults appear to maintain postprandial responsiveness of 1C metabolism to younger adults, supported by a similar postprandial decline in homocysteine concentrations.


Asunto(s)
Complejo Vitamínico B , Humanos , Anciano , Suplementos Dietéticos , Ácido Fólico , Vitamina B 12 , Minerales , Homocisteína
2.
Eur J Nutr ; 61(1): 169-182, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34240265

RESUMEN

PURPOSE: Cardiovascular diseases and cognitive decline, predominant in ageing populations, share common features of dysregulated one-carbon (1C) and cardiometabolic homeostasis. However, few studies have addressed the impact of multifaceted lifestyle interventions in older adults that combine both nutritional supplementation and resistance training on the co-regulation of 1C metabolites and cardiometabolic markers. METHODS: 95 institutionalised older adults (83 ± 6 years, 88.4% female) were randomised to receive resistance training with or without nutritional supplementation (Fortifit), or cognitive training (control for socialisation) for 6 months. Fasting plasma 1C metabolite concentrations, analysed by liquid chromatography coupled with mass spectrometry, and cardiometabolic parameters were measured at baseline and the 3- and 6-month follow-ups. RESULTS: Regardless of the intervention group, choline was elevated after 3 months, while cysteine and methionine remained elevated after 6 months (mixed model time effects, p < 0.05). Elevated dimethylglycine and lower betaine concentrations were correlated with an unfavourable cardiometabolic profile at baseline (spearman correlations, p < 0.05). However, increasing choline and dimethylglycine concentrations were associated with improvements in lipid metabolism in those receiving supplementation (regression model interaction, p < 0.05). CONCLUSION: Choline metabolites, including choline, betaine and dimethylglycine, were central to the co-regulation of 1C metabolism and cardiometabolic health in older adults. Metabolites that indicate upregulated betaine-dependent homocysteine remethylation were elevated in those with the greatest cardiometabolic risk at baseline, but associated with improvements in lipid parameters following resistance training with nutritional supplementation. The relevance of how 1C metabolite status might be optimised to protect against cardiometabolic dysregulation requires further attention.


Asunto(s)
Carbono , Enfermedades Cardiovasculares , Anciano , Envejecimiento , Betaína , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Colina , Suplementos Dietéticos , Femenino , Homocisteína , Humanos , Masculino
3.
Nutrients ; 12(11)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33212933

RESUMEN

Multivitamin and mineral (MVM) supplements are frequently used amongst older populations to improve adequacy of micronutrients, including B-vitamins, but evidence for improved health outcomes are limited and deficiencies remain prevalent. Although this may indicate poor efficacy of supplements, this could also suggest the possibility for altered B-vitamin bioavailability and metabolism in older people. This open-label, single-arm acute parallel study, conducted at the Liggins Institute Clinical Research Unit in Auckland, compared circulatory and urinary B-vitamer responses to MVM supplementation in older (70.1 ± 2.7 y, n = 10 male, n = 10 female) compared to younger (24.2 ± 2.8 y, n = 10 male, n = 10 female) participants for 4 h after the ingestion of a single dose of a commercial MVM supplement and standardized breakfast. Older adults had a lower area under the curve (AUC) of postprandial plasma pyridoxine (p = 0.02) and pyridoxal-5'phosphate (p = 0.03) forms of vitamin B6 but greater 4-pyridoxic acid AUC (p = 0.009). Urinary pyridoxine and pyridoxal excretion were higher in younger females than in older females (time × age × sex interaction, p < 0.05). Older adults had a greater AUC increase in plasma thiamine (p = 0.01), riboflavin (p = 0.009), and pantothenic acid (p = 0.027). In older adults, there was decreased plasma responsiveness of the ingested (pyridoxine) and active (pyridoxal-5'phosphate) forms of vitamin B6, which indicated a previously undescribed alteration in either absorption or subsequent metabolic interconversion. While these findings cannot determine whether acute B6 responsiveness is adequate, this difference may have potential implications for B6 function in older adults. Although this may imply higher B vitamin substrate requirements for older people, further work is required to understand the implications of postprandial differences in availability.


Asunto(s)
Envejecimiento , Desayuno , Periodo Posprandial , Complejo Vitamínico B/sangre , Complejo Vitamínico B/orina , Adulto , Anciano , Registros de Dieta , Ingestión de Energía , Femenino , Humanos , Masculino , Nutrientes , Complejo Vitamínico B/administración & dosificación , Adulto Joven
4.
Nutrients ; 10(10)2018 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-30322081

RESUMEN

Fortified milk drinks are predominantly manufactured from bovine (cow) sources. Alternative formulations include those prepared with hydrolysed bovine milk proteins or from alternate bovidae species, such as caprine (goat) milk. Currently, there is little data on protein digestive and metabolic responses following ingestion of fortified milk drinks. To examine the digestive and metabolic responses to commercially-available fortified milks, young adults (n = 15 males: 15 females), in a randomised sequence, ingested isonitrogenous quantities of whole cow-protein (WC), whole goat-protein (WG), or partially-hydrolysed whey cow-protein (HC), commercial fortified milks. Plasma amino acid (AA) and hormonal responses were measured at baseline and again at 5 h after ingestion. Paracetamol recovery, breath hydrogen, and subjective digestive responses were also measured. Postprandial plasma AA was similar between WC and WG, while AA appearance was suppressed with HC. Following HC, there was a negative incremental AUC in plasma branched-chain AAs. Further, HC had delayed gastric emptying, increased transit time, and led to exaggerated insulin and GLP-1 responses, in comparison to whole protein formulas. Overall, WC and WG had similar protein and digestive responses with no differences in digestive comfort. Contrastingly, HC led to delayed gastric emptying, attenuated AA appearance, and a heightened circulating insulin response.


Asunto(s)
Proteínas en la Dieta/metabolismo , Digestión , Alimentos Fortificados , Leche/química , Periodo Posprandial , Hidrolisados de Proteína/metabolismo , Proteína de Suero de Leche/metabolismo , Adolescente , Adulto , Aminoácidos/sangre , Animales , Bebidas , Glucemia/metabolismo , Bovinos , Femenino , Vaciamiento Gástrico/efectos de los fármacos , Tránsito Gastrointestinal/efectos de los fármacos , Péptido 1 Similar al Glucagón/sangre , Cabras , Humanos , Insulina/sangre , Masculino , Proteínas de la Leche/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA