Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Biol ; 31(11): 2321-2333.e5, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33857429

RESUMEN

Controlling aggression is a crucial skill in social species like rodents and humans and has been associated with anterior cingulate cortex (ACC). Here, we directly link the failed regulation of aggression in BALB/cJ mice to ACC hypofunction. We first show that ACC in BALB/cJ mice is structurally degraded: neuron density is decreased, with pervasive neuron death and reactive astroglia. Gene-set enrichment analysis suggested that this process is driven by neuronal degeneration, which then triggers toxic astrogliosis. cFos expression across ACC indicated functional consequences: during aggressive encounters, ACC was engaged in control mice, but not BALB/cJ mice. Chemogenetically activating ACC during aggressive encounters drastically suppressed pathological aggression but left species-typical aggression intact. The network effects of our chemogenetic perturbation suggest that this behavioral rescue is mediated by suppression of amygdala and hypothalamus and activation of mediodorsal thalamus. Together, these findings highlight the central role of ACC in curbing pathological aggression.


Asunto(s)
Agresión , Giro del Cíngulo , Amígdala del Cerebelo , Animales , Hipotálamo , Ratones , Neuronas
2.
Transl Psychiatry ; 8(1): 125, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29967385

RESUMEN

An unstable epigenome is implicated in the pathophysiology of neurodevelopmental disorders such as schizophrenia and autism. This is important because the epigenome is potentially modifiable. We have previously reported that adult offspring exposed to maternal immune activation (MIA) prenatally have significant global DNA hypomethylation in the hypothalamus. However, what genes had altered methylation state, their functional effects on gene expression and whether these changes can be moderated, have not been addressed. In this study, we used next-generation sequencing (NGS) for methylome profiling in a MIA rodent model of neurodevelopmental disorders. We assessed whether differentially methylated regions (DMRs) affected the chromatin state by mapping known DNase I hypersensitivity sites (DHSs), and selected overlapping genes to confirm a functional effect of MIA on gene expression using qPCR. Finally, we tested whether methylation differences elicited by MIA could be limited by post-natal dietary (omega) n-3 polyunsaturated fatty acid (PUFA) supplementation. These experiments were conducted using hypothalamic brain tissue from 12-week-old offspring of mice injected with viral analogue PolyI:C on gestation day 9 of pregnancy or saline on gestation day 9. Half of the animals from each group were fed a diet enriched with n-3 PUFA from weaning (MIA group, n = 12 units, n = 39 mice; Control group, n = 12 units, n = 38 mice). The results confirmed our previous finding that adult offspring exposed to MIA prenatally had significant global DNA hypomethylation. Furthermore, genes linked to synaptic plasticity were over-represented among differentially methylated genes following MIA. More than 80% of MIA-induced hypomethylated sites, including those affecting chromatin state and MECP2 binding, were stabilised by the n-3 PUFA intervention. MIA resulted in increased expression of two of the 'top five' genes identified from an integrated analysis of DMRs, DHSs and MECP2 binding sites, namely Abat (t = 2.46, p < 0.02) and Gnas9 (t = 2.96, p < 0.01), although these changes were not stabilised by dietary intervention. Thus, prenatal MIA exposure impacts upon the epigenomic regulation of gene pathways linked to neurodevelopmental conditions; and many of the changes can be attenuated by a low-cost dietary intervention.


Asunto(s)
Metilación de ADN , Suplementos Dietéticos , Epigénesis Genética , Ácidos Grasos Omega-3/farmacología , Poli I-C/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Animales , Trastorno Autístico/fisiopatología , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Modelos Lineales , Masculino , Ratones , Ratones Endogámicos C57BL , Poli I-C/administración & dosificación , Embarazo , Esquizofrenia/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA