Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Med Food ; 26(5): 328-341, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37092995

RESUMEN

Microglia-induced neuroinflammation is one of the causative factors in cognitive dysfunction and neurodegenerative disorders. Our previous studies have revealed several benefits of Scrophularia buergeriana extract (Brainon®) in the central nervous system, but the underlying mechanism of action has not been elucidated. This study is purposed to investigate the anti-inflammatory and neuroprotective mechanisms of Brainon in the BV-2 condition SH-SY5Y model. Lipopolysaccharide (LPS)-induced BV-2 conditioned media (CM) were used to treat SH-SY5Y cells to investigate neuroprotective effects of the extract against microglial cytotoxicity. Results demonstrated that pretreated Brainon decreased nitric oxide release, the inducible nitric oxide synthase expression level, and expression of cytokines like interleukin-6, interleukin-1ß, and tumor necrosis factor-α by blocking expression of TLR4/MyD88 and NLRP3 and suppressing nuclear factor κB/AP-1 and p38/JNK signaling pathways in LPS-induced BV-2 cells. In addition, when SH-SY5Y cells were treated with CM, pretreatment with Brainon increased neuronal viability by upregulating expression of antioxidant proteins like as SODs and Gpx-1. Increased autophagy and mitophagy-associated proteins also provide important clues for SH-SY5Y to prevent apoptosis by Brainon. Brainon also modulated mTOR/AMPK signaling to clear misfolded proteins or damaged mitochondria via auto/mitophagy to protect SH-SY5Y cells from CM. Taken together, these results indicate that Brainon could reduce inflammatory mediators secreted from BV-2 cells and prevent apoptosis by increasing antioxidant and auto/mitophagy mechanisms by regulating mTOR/AMPK signaling in SH-SY5Y cells. Therefore, Brainon has the potential to be developed as a natural product in a brain health functional food to inhibit cognitive decline and neuronal death.


Asunto(s)
Neuroblastoma , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Scrophularia , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Antioxidantes/farmacología , Línea Celular Tumoral , Lipopolisacáridos/efectos adversos , Microglía , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Enfermedades Neuroinflamatorias , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , FN-kappa B/metabolismo , Scrophularia/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico
2.
Curr Issues Mol Biol ; 45(2): 1287-1305, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36826029

RESUMEN

Alzheimer's disease (AD) is a worldwide problem. Currently, there are no effective drugs for AD treatment. Scrophularia buergeriana Miquel (SB) is a traditional herbal medicine used in Korea to treat various diseases. Our previous studies have shown that ethanol extract of SB roots (SBE, Brainon®) exhibits potent anti-amnesic effects in Aß1-42- or scopolamine-treated memory impairment mice model and neuroprotective effects in a glutamate-induced SH-SY5Y cell model. In this study, we evaluated the therapeutic effects of Brainon® and its mechanism of action in senescence-accelerated mouse prone 8 (SAMP8) mice. Brainon® (30 or 100 mg/kg/day) was orally treated to six-month-old SAMP8 mice for 12 weeks. Results revealed that Brainon® administration effectually ameliorated cognitive deficits in Y-maze and passive avoidance tests. Following the completion of behavioral testing, western blotting was performed using the cerebral cortex. Results revealed that Brainon® suppressed Aß1-42 accumulation, Tau hyperphosphorylation, oxidative stress, and inflammation and alleviated apoptosis in SAMP8 mice. Brainon® also promoted synaptic function by downregulating the expression of AChE and upregulating the expression of p-CREB/CREB and BDNF. Furthermore, Brainon® restored SAMP8-reduced expression of ChAT and -dephosphorylated of ERK and also decreased AChE expression in the hippocampus. Furthermore, Brainon® alleviated AD progression by promoting mitophagy/autophagy to maintain normal cellular function as a novel finding of this study. Our data suggest that Brainon® can remarkably improve cognitive deficiency with the potential to be utilized in functional food for improving brain health.

3.
Molecules ; 27(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164174

RESUMEN

Since the potential of (3:1) mixtures of Atractylodes macrocephala and Amomum villosum extracts has been proposed in the management of obesity, the purpose of present study was to investigate the effects of AME:AVE (3:1) mixture on weight loss, obesity-related biochemical parameters, adipogenesis and lipogenesis related proteins in 3T3-L1 cells and HFD-induced obesity in a mouse model. Treatment with AME:AVE (3:1) mixture inhibited lipid accumulation. Furthermore, the treatment with 75 and 150 mg/kg of AME:AVE (3:1) significantly decreased the body weight gain, white adipose tissue (WAT) weight, and plasma glucose level in HFD-induced obese mice. Moreover, treatment with 75 and 150 mg/kg AME:AVE (3:1) also significantly lowered the size of adipocytes in adipose tissue and reduced the lipid accumulation in liver. AME:AVE (3:1) treatment significantly decreased the expression of proteins related to adipogenesis and lipogenesis in 3T3-L1 adipocytes and WAT of HFD-induced obese mice. These results suggest that the AME:AVE herbal mixture (3:1) has anti-obesity effects, which may be elicited by regulating the expression of adipogenesis and lipogenesis-related proteins in adipocytes and WAT in HFD-induced obesity in mice.


Asunto(s)
Adipocitos/efectos de los fármacos , Amomum , Fármacos Antiobesidad/uso terapéutico , Atractylodes , Obesidad/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Células 3T3-L1 , Amomum/química , Animales , Fármacos Antiobesidad/química , Fármacos Antiobesidad/farmacología , Atractylodes/química , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Extractos Vegetales/química , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA