Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 155(1): 113-22, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24879958

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: PM014 is a modified form of the Chung-Sang-Bo-Ha-Tang (CSBHT) herbal formula that has been used to treat chronic pulmonary diseases in Korea for centuries. Previously, we developed a formulation of PM014 based on a series of in vitro and in vivo screening efforts that comprises seven herbal extracts. The PM014 formula includes the root of Rehmannia glutinosa, the cortex of Paeonia suffruticosa, the fruit of Schizandra chinensis, the root of Asparagus cochinchinensis, seeds of Prunus armeniaca, the root of Scutellaria baicalensis and the root of Stemona sessilifolia. Asthma is a chronic inflammatory disease of the lungs that is characterized by wheezing, bronchial contraction, and chest tightness. In addition, the airway becomes hypersensitive and narrows through an inflammatory reaction mediated by Th2 cells. The present study was conducted to evaluate the ability of PM014 to prevent allergic airway inflammation and to attenuate airway responses in a cockroach allergen-induced mouse model. MATERIALS AND METHODS: Mice sensitized to and challenged with cockroach allergen were treated with oral administration of PM014. Airway resistance was determined by whole body plethysmography. In addition, Th2 cytokines and immune cell profiles of bronchoalveolar lavage (BAL) fluid and inflammatory mediators in serum were analyzed by ELISA. A series of histological examinations were also conducted to demonstrate the effects of PM014 on airway remodeling, goblet cell hyperplasia and inflammatory responses in the lung. RESULTS: PM014 significantly inhibited the number of total cells, eosinophils, neutrophils, macrophages and lymphocytes in the BAL fluid of mice that were challenged with cockroach allergen. In addition, PM014 reduced the levels of Th2 cytokines (IL-4, IL-5 and IL-13) in the BAL fluid and inflammatory mediators such as IgE in the serum, as measured by enzyme-linked immunosorbent assay (ELISA). Histopathological analysis also showed that PM014 substantially inhibited eosinophil infiltration into the airway, goblet cell hyperplasia and smooth muscle hypertrophy. CONCLUSIONS: In this study, our results indicate that PM014 has significant effects on allergic airway inflammation upon exposure to cockroach allergen in a mouse model. According to these outcomes, PM014 may have therapeutic potential as a treatment for allergic asthma.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Asma/tratamiento farmacológico , Extractos Vegetales/farmacología , Neumonía/tratamiento farmacológico , Administración Oral , Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Alérgenos/inmunología , Animales , Asma/inmunología , Líquido del Lavado Bronquioalveolar/inmunología , Cucarachas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Inmunoglobulina E/sangre , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales/administración & dosificación , Pletismografía Total , Neumonía/inmunología , República de Corea
2.
Artículo en Inglés | MEDLINE | ID: mdl-24058370

RESUMEN

Oxaliplatin, a chemotherapy drug, often leads to neuropathic cold allodynia after a single administration. Bee venom acupuncture (BVA) has been used in Korea to relieve various pain symptoms and is shown to have a potent antiallodynic effect in nerve-injured rats. We examined whether BVA relieves oxaliplatin-induced cold allodynia and which endogenous analgesic system is implicated. The cold allodynia induced by an oxaliplatin injection (6 mg/kg, i.p.) was evaluated by immersing the rat's tail into cold water (4°C) and measuring the withdrawal latency. BVA (1.0 mg/kg, s.c.) at Yaoyangguan (GV3), Quchi (LI11), or Zusanli (ST36) acupoints significantly reduced cold allodynia with the longest effect being shown in the GV3 group. Conversely, a high dose of BVA (2.5 mg/kg) at GV3 did not show a significant antiallodynic effect. Phentolamine ( α -adrenergic antagonist, 2 mg/kg, i.p.) partially blocked the relieving effect of BVA on allodynia, whereas naloxone (opioid antagonist, 2 mg/kg, i.p.) did not. We further confirmed that an intrathecal administration of idazoxan ( α 2-adrenergic antagonist, 50 µ g) blocked the BVA-induced anti-allodynic effect. These results indicate that BVA alleviates oxaliplatin-induced cold allodynia in rats, at least partly, through activation of the noradrenergic system. Thus, BVA might be a potential therapeutic option in oxaliplatin-induced neuropathy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA